Setting Internet Linux Mint (Distro Keluarga Ubuntu) dengan Modem HP/Ponsel SE K800i

Setting internet Linux Mint 5 Elyssa (distro keluarga Ubuntu) dengan modem HP/ponsel Sony Ericsson K800i, dan pastikan GPRS operator kartu seluler kawan telah aktif. Berikut langkah-langkahnya:

1. Koneksikan kabel data USB HP ke komputer, pilih modus Telepon pada opsi sambungan
2. Buka aplikasi Terminal pada Linux Mint

3. Login sebagai root, ketik sudo su

zaldi@helter-skelter:~$ sudo su
[sudo] password for zaldi:
helter-skelter zaldi #

4. Untuk mendeteksi keberadaan HP k800i, ketik dmesg |grep usbcore

helter-skelter zaldi # dmesg |grep usbcore
[ 21.458858] usbcore: registered new interface driver usbfs
[ 21.458979] usbcore: registered new interface driver hub
[ 21.492664] usbcore: registered new device driver usb
[ 54.861084] usbcore: registered new interface driver usbserial
[ 54.861182] usbcore: registered new interface driver usbserial_generic
[ 981.696672] usbcore: registered new interface driver cdc_acm
[ 981.823292] usbcore: registered new interface driver cdc_ether

5. Untuk memeriksa HP k800i sebagai fungsi modem, ketik wvdialconf

helter-skelter zaldi # wvdialconf
Editing `/etc/wvdial.conf’.
Scanning your serial ports for a modem.
ttyS0<*1>: ATQ0 V1 E1 — failed with 2400 baud, next try: 9600 baud
ttyS0<*1>: ATQ0 V1 E1 — failed with 9600 baud, next try: 115200 baud
ttyS0<*1>: ATQ0 V1 E1 — and failed too at 115200, giving up.
ttyS1<*1>: ATQ0 V1 E1 — failed with 2400 baud, next try: 9600 baud
ttyS1<*1>: ATQ0 V1 E1 — failed with 9600 baud, next try: 115200 baud
ttyS1<*1>: ATQ0 V1 E1 — and failed too at 115200, giving up.
Modem Port Scan<*1>: S2 S3
WvModem<*1>: Cannot get information for serial port.
ttyACM0<*1>: ATQ0 V1 E1 — OK
ttyACM0<*1>: ATQ0 V1 E1 Z — OK
ttyACM0<*1>: ATQ0 V1 E1 S0=0 — OK
ttyACM0<*1>: ATQ0 V1 E1 S0=0 &C1 — OK
ttyACM0<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 — OK
ttyACM0<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 — OK
ttyACM0<*1>: Modem Identifier: ATI — Sony Ericsson K800
ttyACM0<*1>: Speed 4800: AT — OK
ttyACM0<*1>: Speed 9600: AT — OK
ttyACM0<*1>: Speed 19200: AT — OK
ttyACM0<*1>: Speed 38400: AT — OK
ttyACM0<*1>: Speed 57600: AT — OK
ttyACM0<*1>: Speed 115200: AT — OK
ttyACM0<*1>: Speed 230400: AT — OK
ttyACM0<*1>: Speed 460800: AT — OK
ttyACM0<*1>: Max speed is 460800; that should be safe.
ttyACM0<*1>: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 — OK
WvModem<*1>: Cannot get information for serial port.
ttyACM1<*1>: ATQ0 V1 E1 — failed with 2400 baud, next try: 9600 baud
ttyACM1<*1>: ATQ0 V1 E1 — failed with 9600 baud, next try: 115200 baud
ttyACM1<*1>: ATQ0 V1 E1 — and failed too at 115200, giving up.
Found an USB modem on /dev/ttyACM0.
Modem configuration written to /etc/wvdial.conf.
ttyACM0<Info>: Speed 460800; init “ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0”

6. Konfigurasi dialer sesuai operator kartu yang digunakan, ketik gedit /etc/wvdial.conf

helter-skelter zaldi # gedit /etc/wvdial.conf

7. Muncul jendela baru, pasang dialer dibawah ini (contoh: operator Telkomsel dan untuk operator lain cukup setting yang berwarna merah), lalu klik Save untuk menutup jendela tadi

[Dialer telkomsel]
Modem = /dev/ttyACM0
Baud = 460800
Init1 = ATZ
Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
Init3 = at+cgdcont=1,”ip”,”telkomsel”
Modem Type = Analog Modem
ISDN = 0
Phone = *99***1#
Username = “wap”
Password = “wap123”

8. Untuk memulai koneksi internet, ketik wvdial telkomsel

helter-skelter zaldi # wvdial telkomsel
–> WvDial: Internet dialer version 1.60
–> Cannot get information for serial port.
–> Initializing modem.
–> Sending: ATZ
ATZ
OK
–> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
OK
–> Sending: at+cgdcont=1,”ip”,”telkomsel”
at+cgdcont=1,”ip”,”telkomsel”
OK
–> Modem initialized.
–> Idle Seconds = 300, disabling automatic reconnect.
–> Sending: ATDT*99***1#
–> Waiting for carrier.
ATDT*99***1#
CONNECT
~[7f]}#@!}!}!} }9}#}%B#}%}(}”}’}”}”}&} } } } }%}&y`Wy1C~
–> Carrier detected. Starting PPP immediately.
–> Starting pppd at Thu Feb 18 21:23:09 2010
–> Pid of pppd: 6281
–> Using interface ppp0
–> local IP address 114.123.191.28
–> remote IP address 10.64.64.64
–> primary DNS address 114.127.253.84
–> secondary DNS address 202.3.210.11

9. Kini telah siap untuk browsing, update blog, atau berkelana didunia maya dengan rasa aman tanpa khawatir Virus
10. Untuk mengakhiri koneksi internet tekan Ctrl + C

Caught signal 2: Attempting to exit gracefully…
–> Terminating on signal 15
–> Connect time 13.4 minutes.
–> Disconnecting at Thu Feb 18 21:36:35 2010
helter-skelter zaldi #

Semoga bermanfaat..
Go Linux

Ditulis dalam Linux. Leave a Comment »

Upgrade Ubuntu Offline 10.10 (Meerkat Maverick)

Bagaimana melakukan update cdrom offline Anda Ubuntu dari versi 10.04 (“Lucid Lynx”) ke Ubuntu dari versi 10.10 (alias “Maverick Meerkat”), dan dimaksudkan untuk orang-orang yang untuk upgrade memiliki koneksi internet yang lambat. Ubuntu ver 10.10  dirilis pada 10 Oktober 2010. Bagi anda yang tidak menyadari hal ini, 10 di 10 .04 mengacu pada tahun 20 10dan 04-04 bulan. Oleh karena itu, 10.10 sama Tahun 2010 Bulan 10.
Persiapan:
– Pastikan bahwa Anda Ubuntu up-to-date sebelum melakukan upgrade karena Anda tidak ingin mendapatkan kesalahan selama upgrade.

Catatan: Ini berarti bahwa jika PC yang akan diupgrade telah NO koneksi internet, mungkin lebih baik untuk hanya mulai dari awal.

– Memiliki sekurangnya 800MB ruang yang tersedia dalam sistem file Anda Ubuntu.

– Harap dicatat: bahwa Anda TIDAK BISA versi melompat ketika melakukan upgrade. Selama versi Anda adalah 8.04 dan di atas, Anda harus dapat mengikuti panduan ini untuk meng-upgrade ke versi terbaru dan terbaik dari Ubuntu. Pastikan Anda meng-upgrade bertahap cara ini: 8,04-8,10, 8,10-9,04, 9,04-9,10, 9,10-10,04, 10,04-10,10, 10,10-11,04 Natty Narwhal (jika tersedia).Tidak melompat! Jika Anda terlalu jauh di belakang, lebih baik untuk hanya mendapatkan CD terbaru dan menginstal dari awal. Kenapa begitu? Seperti yang dapat Anda lihat dari jalur upgrade sederhana di atas, dengan asumsi bahwa 1 CD adalah 700 MB, anda harus men-download minimal 2800 MB file untuk meng-upgrade cara ini.



Ubuntu 10.10 Updating: Visual Guide

Upgrade Ubuntu 10.10. 

Catatan: Foto menunjukkan dicoba dan diuji metode upgrade pada versi 10,04 Ubuntu, bekerja dengan cara yang sama dengan 10.10

Keying in the sudo mount command and path to the ISO file in the terminal.
Apakah anda ingin memulai pemutakhiran (

upgrade)

?


Getting new packages – “Upgrading Ubuntu to version 10.04 LTS
Installing the upgrades: just starting
Instalasi upgrade: 2 menit yang tersisa (Apakah berhasil ?)
Latar belakang desktop baru adalah warna coklat
datang dengan latar depan seni bagus seperti pada gambar ini
1. CD instalasi Alternatif di sini:


Ubuntu 10.10 dapat diunduh


alternative download


atau  link lokal untuk Ubuntu 10.10 di Indonesia. Tinggal pilih mau desktop edition, netbook edition, atau Ubuntu studio bahkan yang edisi Server.

2. Membakar CD ATAU tidak menggunakan CD.

Hanya me-mount file iso.
Masuk ke terminal (command prompt ) dan ketik:
sudo mount -o loop ~/Desktop/ubuntu-10.10-alternate-i386.iso /cdrom
Perintah yang digunakan adalah ini:

sudo mount -o loop /media/disk/Ubuntu/ubuntu-10.10-alternate-i386.iso /cdrom

If you run into low space error, bring up a terminal and run the following commands to clean junk files fr prev upgrade or updates:
sudo apt-get clean
sudo apt-get autoclean
sudo apt-get remove
Jika tidak dapat menemukan dialog upgrade, cobalah memegang ALT dan tekan F2, lalu ketik ini pada jendela Run.:
gksu “sh /cdrom/cdromupgrade”

atau



kdesudo “sh /cdrom/cdromupgrade”( Kubuntu )

Selesai! dan nikmati ubuntu baru.
JIKA Anda mengalami kesalahan saat upgrade, JANGAN panik TIDAK! Cukup ikuti instruksi apapun yang mungkin muncul pada layar Anda.

sumber:

Ditulis dalam Linux. Leave a Comment »

Distro Linux

Distro Linux (Singkatan dari distribusi Linux) adalah sebutan untuk sistem operasi komputer dan aplikasinya, merupakan keluarga Unix yang menggunakan kernel Linux.
Distribusi Linux bisa berupa perangkat lunak bebas dan bisa juga berupa perangkat lunak komersial seperti Red Hat Enterprise, SuSE, dan lain-lain.
Ada banyak distribusi atau distro Linux yang telah muncul. Beberapa bertahan dan besar, bahkan sampai menghasilkan distro turunan, contohnya adalah Distro Debian GNU/Linux. Distro ini telah menghasilkan puluhan distro anak, antara lain Ubuntu, Knoppix, Xandros, DSL, dan sebagainya.
Berikut daftar macam-macam Distro Linux yang bisa anda download gratis di internet:
1.Red Hat Linux
Red Hat adalah distro yang cukup populer di kalangan pengembang dan perusahaan Linux.
2.Ubuntu
Ubuntu adalah salah satu distribusi Linux yang berbasiskan pada Debian.
Proyek Ubuntu disponsori oleh Canonical Ltd (perusahaan milik Mark Shuttleworth).
Nama Ubuntu diambil dari nama sebuah konsep ideologi di Afrika Selatan. “Ubuntu” berasal dari bahasa kuno Afrika, yang berarti “rasa perik

emanusian terhadap sesama manusia”.

3.CentOS
CentOS adalah sistem operasi bebas yang didasarkan pada Red Hat Enterprise Linux (RHEL).
CentOS singkatan dari Community ENTerprise Operating System (Sistem Operasi Perusahaan buatan Komunitas/Masyarakat).
4.Debian
Debian adalah sistem operasi berbasis kernel Linux.
Debian adalah ‘kernel independen’, yaitu sistem operasi Debian dikembangkan murni tanpa mendasarkan pada sistem operasi yang telah ada.
5.Fedora
Fedora (sebelumnya bernama Fedora Core, terkadang disebut juga dengan Fedora Linux) adalah sebuah distro Linux berbasis RPM dan yum yang dikembangkan oleh Fedora Project yang didukung oleh komunitas pemrogram serta disponsori oleh Red Hat.
Nama Fedora berasal dari karakter fedora yang digunakan di logo Red Hat.
6.Xandros
Xandros Linux adalah sebuah distro Linux yang berdasarkan pada sistim KDE.
Tampilannya sangat mirip dengan Microsoft Windows, jadi apabila dioperasikan sangat mudah dan nyaman.
7.Knoppix
Knoppix adalah distro Linux live-cd yang dapat dijalankan melalui CD-ROM tanpa instalasi di hard disk.
Distro ini berbasis Debian Linux dan diciptakan oleh Klaus Knopper.
8.Gentoo
Gentoo Linux adalah suatu distribusi Linux yang memakai paket sistem manajemen Portage. [Bandingkan dengan: Debian yang menggunakan paket .deb, RedHat / Mandrake yang menggunakan paket .rpm].
Manajemen paket ini dirancang untuk modular (mudah ditambah-tambah), portabel (dapat di port ke distro lain), mudah ditata, fleksibel, dan dioptimalkan untuk masing-masing komputer pengguna.
9.Slackware
Slackware merupakan sistem operasi yang dibuat oleh Patrick Volkerding dari Slackware Linux, Inc. Slackware merupakan salah satu distro awal, dan merupakan yang tertua yang masih dikelola.
Tujuan utama Slackware adalah stabilitas dan kemudahan desain, serta menjadi distribusi Linux yang paling mirip Unix
10.Mandriva Linux
Mandriva Linux (dahulu dikenal dengan nama Mandrakelinux atau Mandrake Linux) adalah sistem operasi yang dibuat oleh Mandriva (dahulu dikenal dengan nama Mandrakesoft).
Mandriva Linux menggunakan RPM Package Manager.
11.openSUSE
SUSE sebelumnya bernama SUSE Linux dan SuSE Linux Professional adalah salah satu distro Linux dari perusahaan Novell, atau lebih tepat dari anak perusahaannya Suse Linux GmbH (Software- und System-Entwicklungsgesellschaft mbH, Nürnberg yang berarti pengembangan -perangkat lunak dan -sistem)
12.Freespire
Freespire adalah versi gratis dari distro Linspire (a.k.a Lindows), kemudian mungkin dikarenakan permasalahan nama, berubah menjadi Linspire.
13.Linux Mint
Linux Mint adalah sistem operasi berbasis Linux untuk PC.
Inti dari LinuxMint adalah Ubuntu, sehingga aplikasi yang dapat berjalan di Ubuntu, juga bisa berjalan pada LinuxMint.
14.PCLinuxOS
PCLinuxOS, sering disingkat sebagai PCLOS, adalah sebuah sistem operasi desktop.
Ini adalah sebuah sistem operasi bebas untuk komputer pribadi yang bertujuan untuk memudahkan penggunaan.
15.Puppy Linux
Puppy Linux adalah salah satu distro Linux Live CD yang sangat kecil ukurannya dan mengutamakan kemudahan dalam penggunaan.
Seluruh sistem operasi dan aplikasinya berjalan dalam RAM, yang membolehkan media booting dilepas setelah sistem operasi berhasil dijalankan.
16.Sabayon Linux
Sabayon Linux, merupakan salah satu turunan Gentoo.
Gentoo merupakan sebuah sistem operasi bebas berbasis source (Linux maupun FreeBSD) dengan metode instalasi kompilasi dan optimasi untuk CPU yang bersangkutan, dengan model kustomisasi semua paket atau hanya paket aplikasi yang dibutuhkan
17.Turbo Linux
TurboLinux menargetkan pada produk berbasis Linux dengan kinerja tinggi untuk pasar workstation dan server terutama untuk penggunaan clustering dan orientasinya ke perusahaan.
Pengguna produk dan layanan TurboLinux terbanyak adalah perusahaan dan perorangan di Jepang dan Asia.
18.Damn Small Linux
Damn Small Linux(DSL) adalah salah satu distro/varian linux mini. Disebut mini karena paket DSL cuma 50MB besarnya. DSL juga memungkinkan untuk diinstall di USB 128MB.
Ditulis dalam Linux. Leave a Comment »

Mengubah tampilan linux menjadi windows xp sp 2

dalam rangka mensosialisasikan linux kepada teman temanku yang cenderung takut untuk mencoba os lain selain windows jadi saya mencoba mengubah tampilan linuxku menjadi seperti windows dengan harapan, pas laptopku dipinjam dan make leptopku di ndak terlalu merasakan perbedaannya *maklumlah kadang masih ada orang yang baru mau pake linux setelah mencobanya*

setelah bergoogle ria dan dibantu sama bhifie akhirnya nemu tutorial ini

berikut langkah langkahnya :

advertising by google

 

Klik kanan Mint Menu yang ada di panel di pojok kiri bawah:

> Preferences > hapus Button text > ganti Button icon dengan:

> gambar  bisa diambil dari windows atau bisa juga dengan klik kanan pada image ini trus pilih view image trus save image as

Copykan ke /usr/lib/linuxmint/mintMenu/ > klik kanan > open as root > paste.

> close.

Klik kanan pada panel > Background > centang Background image.

> gambarnya diganti gambar:

> taskbar dari windows > close.

* sebaiknya gambar button windows dan panelnya disimpan pada folder yang kamu anggap ndak bakalan kamu hapus ato dihapus oleh orang lain

Klik kanan pada Desktop > Change Desktop Background > Theme > Customize > Control > pilih Mist.
> Icons > pilih Gion atau Win7.lookalike.1.0.2 atau terserah.

> close > close.

Atur launcher panel, paling kanan adalah date & time, sebelah kirinya adalah volume control dan notification area, atau terserah.
Di sebelah kanan menu yang sudah diganti start, taruh launcher sak karepe, paling kanan adalah Window list.

Tambah huruf dari windows dengan cara copy > /usr/share/fonts/ > open as root > paste, atau $sudo apt-get install mscorefont kalau sedang konek ke internet.

Atur huruf:
application font = tahoma 10,
document font = verdana 10,
desktop font = tahoma 9, atau terserah yang penting mirip windows.

> close.

Klik Menu > All application > preference > mintDesktop > Desktop item:
pilih Computer dan Trash. Setelah tampil di desktop di-rename menjadi My Computer dan Recycle Bin.
Document dibuatkan shortcut di Desktop dan di-rename menjadi My Documents.
Kecilkan icon di Desktop dengan cara:
Alt+F2 > gconf-editor > apps > nautilus > icon_view > default zoom level > dari standard diganti small.

Sekarang tampilannya kayak begini:

Ditulis dalam Linux. Leave a Comment »

I/O Linux

Salah satu tujuan OS adalah menyembunyikan kerumitan device hardware dari sistem penggunanya. Contohnya, Sistem Berkas Virtual menyamakan tampilan sistem berkas yang dimount tanpa memperdulikan devices fisik yang berada di bawahnya. Bab ini akan menjelaskan bagaimana kernel Linux mengatur device fisik di sistem.

Salah satu fitur yang mendasar adalah kernel mengabstraksi penanganan device. Semua device hardware terlihat seperti berkas pada umumnya: mereka dapat dibuka, ditutup, dibaca, dan ditulis menggunakan calls sistem yang sama dan standar untuk memanipulasi berkas. Setiap device di sistem direpresentasikan oleh sebuah file khusus device, contohnya disk IDE yang pertama di sistem direpresentasikan dengan /dev/hda. Devices blok (disk) dan karakter dibuat dengan perintah mknod dan untuk menjelaskan device tersebut digunakan nomor devices besar dan kecil. Devices jaringan juga direpresentasikan dengan berkas khusus device, tapi berkas ini dibuat oleh Linux setelah Linux menemukan dan menginisialisasi pengontrol-pengontrol jaringan di sistem. Semua device yang dikontrol oleh driver device yang sama memiliki nomor device besar yang umum. Nomor devices kecil digunakan untuk membedakan antara device-device yang berbeda dan pengontrol-pengontrol mereka, contohnya setiap partisi di disk IDE utama punya sebuah nomor device kecil yang berbeda. Jadi, /dev/hda2, yang merupakan partisi kedua dari disk IDE utama, punya nomor besar 3 dan nomor kecil yaitu 2. Linux memetakan berkas khusus device yang diteruskan ke system call (katakanlah melakukan mount ke sistem berkas device blok) pada driver si device dengan menggunakan nomor device besar dan sejumlah tabel sistem, contohnya tabel device karakter, chrdevs.

Linux membagi devices ke tiga kelas: devices karakter, devices blok dan devices jaringan.

Device Karakter

Device karakter, device paling sederhana dari Linux, diakses sebagai berkas. Aplikasi menggunakan system calls standar untuk membukanya, membacanya dan menulisnya dan menutupnya persis seolah devices adalah berkas. Memang benar, meski pun devices ini merupakan modem yang sedang digunakan oleh PPP daemon untuk menghubungkan sistem Linux ke jaringan. Saat sebuah device karakter diinisialisasi, driver devicenya mendaftarkan sang device pada kernel Linux dengan menambahkan sebuah entry ke vektor chrdevs dari struk data device_struct. Pengenal utama devicenya digunakan sebagai indeks ke vektor ini. Pengenal utama untuk suatu device tidak pernah berubah.

Setiap entry di vektor chrdevs, sebuah struk data device_struct, mengandung dua elemen: sebuah penunjuk nama dari driver devices yang terdaftar dan sebuah penunjuk ke operasi-operasi berkas seperti buka, baca, tulis, dan tutup. Isi dari /proc/devices untuk devices karakter diambil dari vektor chrdevs.

Saat sebuah berkas khusus karakter yang merepresentasikan sebuah devices karakter (contohnya /dev/cua0) dibuka, kernelnya harus mengatur beberapa hal sehingga routine operasi berkas yang benar dari driver devices karakter akan terpanggil.

Seperti sebuah berkas atau direktori pada umumnya, setiap berkas khusus device direpresentasikan dengan sebuah inode VFS. Inode VFS untuk sebuah berkas khusus karakter tersebut, sebenarnya untuk semua berkas yang berada dibawahnya, contohnya EXT2. Hal ini terlihat dari informasi di berkas yang sebenarnya ketika nama berkas khusus device dilihat.

Setiap inode VFS memiliki keterkaitan dengan seperangkat operasi berkas dan operasi-operasi ini berbeda tergantung pada objek sistem berkas yang direpresentasikan oleh inode tersebut. Kapan pun sebuah VFS yang merepsentasikan berkas khusus karakter dibuat, operasi-operasi berkasnya diset ke operasi device karakter default.

VFS inode memiliki hanya satu operasi berkas, yaitu operasi membuka berkas. Saat berkas khusus karakter dibuka oleh sebuah aplikasi, operasi buka berkas yang umum atau generik menggunakan pengenal utama dari device tersebut. Pengenal ini digunakan sebagai index ke vektor chrdevs untuk memperoleh blok operasi berkas untuk device tertentu ini. Ia juga membangun struk data berkas yang menjelaskan berkas khusus karakter ini, yang membuat penunjuk operasi berkas menunjuk ke driver device itu. Setelah itu semua aplikasi dari operasi-operasi berkas aplikasi akan dipetakan untuk memanggil perangkat devices karakter dari operasi berkas itu.

Device Blok

Device ini pun diakses seperti berkas. Mekanisme untuk menyediakan perangkat operasi berkas yang benar bagi berkas khusus blok yang terbuka sama seperti devices karakter. Linux memelihara operasi dari perangkat device blok yang terdaftar sebagai vektor blkdevs. Vektor ini, seperti halnya vektor chrdevs, diindeks dengan menggunakan nomor device besar dari sang device. Entrynya juga merupakan struk data device_struct. Tidak seperti devices karakter, ada sejumlah kelas yang dimiliki device blok. Device-device SCSI adalah salah satu kelasnya dan device IDE adalah kelas lainnya. Kelaslah yang mendaftarkan dirinya sendiri pada kernel Linux dan menyediakan operasi berkas kepada kernel. Driver-driver device untuk sebuah kelas device blok menyediakan interface khusus kelas kepada kelas tersebut. Jadi, contohnya, sebuah driver device SCSI harus menyediakan interface untuk subsistem SCSI agar dapat menyediakan operasi berkas bagi devices ini ke kernel.

Setiap driver device blok harus menyediakan sebuah interface ke cache buffernya, demikian pula interface operasi umum berkas. Setiap driver device blok mengisi entrynya di vektor blk_dev dari struk data blk_dev_struct. Indeksnya ke vektor ini, lagi-lagi, nomor utama devicenya. Struk data blk_dev_struct mengandung alamat routine permintaan dan sebuah penunjuk ke sekumpulan struk data request,yang masing-masingnya merepresentasikan sebuah request dari cache buffernya untuk driver untuk membaca atau menulis atau menulis satu blok data.

Setiap kali cache buffer ingin membaca dari, atau pun menuliskan satu blok data ke device terdaftar, ia menambahkan struk data request kedalam blk_dev_struct nya. Gambar di atas ini menunjukkan bahwa setiap request memiliki pointer (penunjuk) ke satu atau lebih struk data buffer_head. Masing-masingnya merupakan suatu request untuk membaca atau menulis sebuah blok data. Struk buffer_head tersebut dikunci (oleh cache buffer) dan mungkin ada suatu proses yang menunggu buffer ini selesai di operasi blok tersebut. Setiap struk request dialokasikan dari suatu daftar yang statik, yaitu daftar all_request. Jika proses tersebut sedang dimasukkan sebuah ke list request yang kosong, fungsi request dari drivernya akan dipanggil agar memulai proses antrian request. Jika tidak driver tersebut hanya akan memproses setiap request di daftar request.

Sekali driver device telah menyelesaikan sebuah request, ia harus membuang setiap stuk buffer_request dari struk requestnya, kemudian mencapnya up to date dan membuka kuncinya. Pembukaan kunci buffer_head akan membangunkan proses apa pun yang tidur akibat menunggu operasi blok selesai. Contoh dari kasus ini misalnya dimana sebuah nama berkas sedang ditangani dan sistem berkas EXT2 harus membaca blok data yang mengandung entry direktori EXT2 berikutnya dari device blok yang menyimpan sistem berkas tersebut. Proses ini tidur di buffer_head yang akan mengandung entri direktorinya sampai driver devicenya membangunkannya. Struk data request tersebut ditandai bebas sehingga ia dapat digunakan di request blok lainnya.

Device Jaringan

Device jaringan merupakan sebuah entity yang mengirimkan dan menerima paket-paket data. Biasanya ia merupakan device fisik seperti kartu ethernet. Beberapa devices jaringan bagaimana pun hanyalah software, seperti device loopback yang digunakan untuk mengirimkan data ke Anda. Setiap device direpresentasikan dengan struk data device. Driver device jaringan mendaftarkan device-device yang ia kontrol pada Linux selama inisialisasi jaringan yaitu saat kernel melakukan booting. Struk data device tersebut berisi informasi mengenai device dan alamat fungsi-fungsi yang memungkinkan bermacam-macam protokol jaringan menggunakan layanan dari device tersebut. Fungsi-fungsi ini kebanyakan terkait dengan mentransmisikan data dengan menggunakan device jaringan. Device tersebut menggunakan mekanisme pendukung jaringan standar untuk melewatkan data yang diterima sampai ke lapisan protokol yang semestinya. Semua data jaringan atau paket yang ditransmisikan dan diterima, direpresentasikan dengan struk-struk data sk_buff. Struk-struk data yang bersifat fleksibel ini memungkinkan header-header protokol jaringan menjadi mudah ditambahkan dan dibuang. Bagian ini hanya memfokuskan pada struk data device serta bagaimana jaringan ditemukan dan diinsialisasi.

Struk data device ini mengandung informasi tentang device jaringan:

Fungsi Pendukung

Setiap device menyediakan seperangkat routine standar yang lapisan-lapisan protokol sebut sebagai bagian dari interface mereka ke lapisan link device ini. Hal ini termasuk pembuatannya dan routine-routine pengirim frame dan routine-routine penambah header standar dan pengumpul statistik. Statistik ini bisa dilihat dengan memakai perintah ifconfig.

Komunikasi Antar Proses

Untuk mengatur kegiatan proses mereka perlu saling berkomunikasi. Linux mendukung berbagai mekanisme komunikasi antar proses (KAP). Sinyal dan pemipaan merupakan dua di antaranya, tapi linux juga mendukung system sistem ke lima mekanisme KAP.

Sinyal

Sinyal merupakan salah satu metode KAP tertua sistem Unix. Sinyal digunakan untuk memberitahukan kejadian yang asinkronus pada satu atau lebih proses. misalnya sinyal yang dihasilkan oleh keyboard saat ditekan oleh pemakai. Sinyal juga dapat dihasilkan oleh kondisi yang menyatakan error, misalnya saat suatu proses mencoba mengakses lokasi yang tidak pernah ada di dalam memori utama. Sinyal pun digunakan oleh shells untuk memberitahu perintah kontrol kerja kepada proses child.

Bagaimana Suatu Sinyal Disikapi

Proses dapat memilih untuk mengabaikan kebanyakan sinyal yang digenerate dengan dua pengecualian: baik sinyal SIGSTOP, yang menyebabkan suatu proses menghentikan pekerjaannya, mau pun sinyal SIGKILL, yang menyebabkan suatu proses berhenti, tidak dapat diabaikan. Selain itu, suatu proses dapat memilih bagaimana cara ia mengatasi bermacam-macam sinyal. Proses dapat menghalangi sinyal tersebut dan, bila tidak menghalanginya, proses itu dapat memilih antara mengatasinya sendiri atau membiarkan kernel mengatasinya. Bila kernel mengatasi sinyal tersebut maka sejumlah tindakan default akan dilakukan untuk mengatasi sinyal ini. Misalnya, tindakan default saat sebuah proses menerima sinyal SIGPE (exception floating point) adalah dengan core dump kemudian keluar. Sinyal tidak punya prioritas-prioritas yang terkait. Bila dua sinyal dihasilkan untuk suatu proses pada waktu yang sama, maka keduanya dapat diberikan ke proses tersebut atau ditangani dengan urutan tertentu. Selain itu, tidak ada mekanisme untuk mengatasi sinyal yang sama dan banyak sekaligus. Tidak ada cara bahwa suatu proses dapat memberitahukan apakah ia menerima 1 atau 42 sinyal SIGCONT.

Penerapan Sinyal

Linux menerapkan sinyal dengan menggunakan informasi yang disimpan dalam task_struct untuk proses tersebut. Jumlah sinyal yang didukung terbatas pada ukuran word prosesornya. Proses dengan ukuran word 32 bit dapat memiliki 32 sinyal sementara prosesor 64 bit seperti Alpha AXP dapat memiliki sampai 64 sinyal. Sinyal-sinyal yang tertunda saat ini disimpan dalam field sinyal dengan sebuah mask dari sinyal-sinyal terblokir yang disimpan di blocked. Dengan pengecualian SIGTOP dan SIGKILL, semua sinyal dapat diblokir. Bila sinyal yang diblokir digenerate, maka sinyal itu akan tetap tertahan sampai ia tidak diblokir lagi.

Linux juga menyimpan informasi tentang bagaimana setiap proses menangani sinyal-sinyal yang mungkin terjadi. Informasi ini disimpan dalam suatu array stuktur data sigaction yang ditunjuk oleh task_struct untuk setiap proses. Di antara hal-hal yang lain, informasi ini mengandung baik alamat routin yang nantinya menangani sinyal atau flag, yang memberitahu Linux bahwa proses tersebut ingin mengabaikan sinyal ini atau membiarkan kernel menanganinya. Proses tersebut memodifikasi penanganan default sinyal dengan membuat system call ,dan call ini mengubah sigaction untuk sinyal yang sesuai dan juga mask daripada blocked.

Tidak semua proses di dalam sistem dapat mengirimkan sinyal ke proses lainnya. Kernel dapat melakukannya demikian pula super users. Proses-proses biasa hanya dapat mengirim sinyal pada proses-proses yang memiliki uid dan gid yang sama atau pun pada kelompok proses yang sama. Sinyal digenerate dengan mengatur bit yang sesuai di dalam field signal task_struct. Jika proses tersebut belum memblokir sinyal dan sedang menunggu (namun dapat diinterrupt di status Interruptible), maka ia akan dibangunkan dengan mengubah statusnya ke Running dan memastikan bahwa proses ini berada pada antrian run. Dengan cara itu scheduler akan menganggapnya sebagai suatu yang akan running pada jadwal sistem berikutnya. Jika penanganan default diperlukan, maka Linux dapat mengoptimalkan penganganan sinyal tersebut. Sebagai contoh, jika sinyal SIGWINCH (fokus yang berubah dari jendela X) dan penangan default sedang digunakan, maka tidak ada yang perlu dilakukan.

Sinyal-sinyal tidak diberikan ke proses segera saat mereka digenerate. Sinyal-sinyal ini harus menunggu sampai proses tersebut berjalan kembali. Setiap kali sebuah proses keluar dari suatu system calls, field signals dan blocked dicek dan bila ada sinyal-sinyal apa pun yang tidak terblokir, sekarang sinyal-sinyal ini dapat disampaikan. Kelihatannya cara ini bukanlah cara yang dapat diandalkan, namun setiap proses di dalam sistem pasti membuat system calls, sebagai contoh, untuk menulis suatu karakter ke terminal sepanjang waktu. Proses dapat memilih untuk menunggu sinyal bila ia mau, kemudian dapat disuspend di status Interruptible sampai sinyal itu datang. Kode pemrosesan sinyal Linux melihat pada struktur sigaction untuk setiap sinyal yang saat ini belum diblokir.

Jika sebuah penangan sinyal diset ke tindakan default, maka kernel akan mengatasinya. Penangan default sinyal SIGSTOP akan mengubah status proses saat ini ke status Stopped dan selanjutnya menjalankan scheduler untuk memilih sebuah proses baru untuk berjalan. Tindakan default untuk sinyal SIGFPE akan core dump proses dan menyebabkannya keluar. Cara lainnya, proses tersebut dapat menentukan handler sinyalnya sendiri. Penangan ini merupakan suatu routine yang akan dipanggil kapan pun sinyal digenerate dan struktur sigactionnya menyimpan alamat routine ini. Kernel tersebut harus memanggil routine penangan sinyal proses tersebut dan bagaimana ini terjadi adalah kekhususan masing-masing prosesor tetapi intinya semua CPU harus berhasil mengatasi kenyataan bahwa proses saat ini sedang berjalan di mode kernel dan mengembalikan proses yang tadi memanggil kernel atau system routine di mode user. Masalah ini terpecahkan dengan memanipulasi stack dan register daripada proses tersebut. Program counter dari proses diset ke alamat sinyalnya, yang menangani routine, dan parameter-parameter ke routine dimasukkan ke frame callnya atau dilewatkan di register. Ketika proses tersebut menerima operasi, proses ini terlihat seolah-olah routine penangan sinyalnya dipanggil secara normal.

Linux bersifat POSIX compatible dan oleh karena itu prosesnya dapat menentukan sinyal-sinyal mana yang diblokir saat routine tertentu penangan sinyal dipanggil. Hal ini berarti mengubah mask blocked tersebut selama pemanggilan penangan sinyal proses-proses tersebut. mask blocked harus dikembalikan ke nilai aslinya ketika routine penangan routine tersebut telah selesai. Oleh karena itu Linux menambahkan suatu call pada sebuah routine perapih yang akan mengembalikan mask asli daripada blocked ke dalam stack call dari proses yang disinyal. Linux juga mengoptimalkan kasus di mana beberapa routine penangan sinyal perlu dipanggil dengan stacking routine-routine ini sehingga setiap saat sebuah routine penangan ada, routine penangan berikutnya dipanggil sampai routine perapih dipanggil.

Pipa

Semua shells Linux yang biasa, membolehkan redirection. Sebagai contoh

$ ls | pr | lpr

memipakan output dari perintah ls, yang melist file yang ada di dalam direktori, sampai standar input dari perintah pr yang mempaginasi file tersebut. Pada akhirnya standard output dari perintah pr dipipakan ke standar input dari perintah lpr yang mencetak hasil-hasilnya ke printer default. Pipa-pipa berikutnya adalah unidirectional byte streams yang menghubungkan standard output dari suatu proses ke standar input dari proses lainnya. Proses tidak peduli terhadap redirection ini dan berperilaku seolah-olah ia berjalan normal saja. Adalah shell yang membangun pipa-pipa yang bersifat sementara ini di antara dua proses tersebut.

Penerapan

Di Linux, suatu pipa diterapkan dengan menggunakan dua struktur data file yang keduanya menunjuk ke inode VFS sementara yang sama yang ia sendiri menunjuk pada halaman fisik di dalam memori. Gambar di atas menunjukkan bahwa setiap struktur data file mengandung pointer ke vektor-vektor routine operasi file yang berbeda; satu untuk menulis ke pipa, satu lagi untuk membaca dari pipa.

Hal tersebut menyembunyikan perbedaan-perbedaan yang mendasar dari system calls umum yang membaca dan menulis file biasa. Saat proses menulis tersebut menulis ke pipa, byte-byte dikopi ke halaman data bersama dan ketika proses membaca membaca dari pipa, byte-byte dikopi dari halaman data bersama. Linux harus mensinkronisasikan akses ke pipa tersebut. Linux harus memastikan bahwa pembaca dan penulis pipa berada pada jalur dan untuk melakukannya Linux menggukan kunci, antrian wait dan sinyal.

Cara Menulis Data

Saat penulis ingin menulis ke pipa, ia menggunakan fungsi-fungsi pustaka penulisan yang standar. Semuanya ini melewatkan pendeskripsi file yang diindeks ke perangkat proses dari sturktur data file, masing-masing merepresentasikan file yang sedang terbuka atau pun, dalam kasus ini, pipa yang terbuka. routine penulis itu menggunakan informasi yang ada di dalam inode VFS yang merepresentasikan pipa untui mengatur permintaan menulis.

Bila ada cukup ruangan untuk menulis semua bytes kedalam pipa dan, sepanjang pipa tidak dikunci oleh pembacanya, Linux menguncinya untuk si penulis dan mengkopikan bytes tersebut dari ruang alamat proses itu ke halaman data bersama. Bila pipa itu dikunci oleh pembaca atau bila tidak ada cukup ruang bagi data maka proses sekarang disuruh tidur di antrian tunggu inode pipa itu dan scheduller dipanggil sehingga proses lainnya dapat berjalan. Proses yang tidur ini interruptible, sehingga ia masih dapat menerima sinyal dan dapat dibangunkan oleh pembaca ketika ruangan telah cukup untuk ditulisi data atau pun ketika pipa sudah tidak dikunci. Setelah data ditulis, inode VFS dari pipa dibuka kuncinya dan semua pembaca yang menunggu di antrian tunggu inode akan dibangunkan oleh mereka sendiri.

FIFO

Linux pun mendukung pipa bernama, yang dikenal dengan FIFO karena prinsip kerjanya FIFO. Data yang pertama kali ditulis ke pipa adalah data pertama yang dibaca. Tidak seperti pipa, FIFO bukan merupakan objek yang bersifat sementara, ia adalah entity di sistem file dan bisa dibuat dengan perintah mkfifo. Proses-proses bebas menggunakan FIFO selama mereka punya hak akses ke sana. Cara FIFO dibuka sedikit berbeda dengan pipa. Sebuah pipa (dua struktur data filenya, inode VFSnya dan halaman data bersama) dibuat sekaligus sementara FIFO sudah ada dan dibuka dan ditutup oleh penggunanya. Linux harus menangani pembaca-pembaca yang membuka FIFO sebelum penulis-penulis membukanya dan juga penulis-penulis yang membacanya sebelum penulis-penulis sudah menulisnya. Selain itu, FIFO ditangani dengan cara yang hampir sama dengan pipa dan FIFO menggunakan struktur data dan operasi yang sama

Struktur Jaringan

Ide pokok dari jaringan mungkin sudah setua usia telekomunikasi itu sendiri. Coba anda bayangkan ketika anda harus tinggal di jaman batu, yang ketika itu gendang digunakan sebagai alat untuk berkomunikasi satu dengan lainnya. Andaikan manusia gua A ingin mengundang manusia gua B untuk bermain, tapi jarak B terlalu jauh dari A untuk mendengar suara gendang yang dibunyikannya. Apa yang akan dilakukan oleh A? Mungkin si A akan datang langsung ke tempat B, membunyikan gendang yang lebih besar, atau meminta C yang tinggal di antara A dan B untuk menyampaikan pesan ke B. Pilihan terakhir inilah yang merupakan dasar dari jaringan.

Terlepas dari masalah jaman batu, sekarang kita memiliki komputer yang canggih. Dimana komputer yang kita miliki sekarang dapat berkomunikasi dengan komputer lainnya melalui kabel tembaga, kabel optik, gelombang microwave, dan medium komunikasi lainnya.

Sebagai hasil dari usaha para programmer dari seluruh dunia, Linux tidak akan tercipta tanpa Internet. Jadi tidaklah mengherankan apabila pada tahap awal pengembangan, beberapa orang mulai mengerjakan kemampuan jaringan di Linux. implementasi UUCP di Linux sudah ada sejak awal dan jaringan dengan basis TCP/IP mulai dikerjakan sejak musim gugur 1992, ketika Ross Biro dan yang lainnya mengerjakan sesuatu yang kini disebut dengan Net-1.

Setelah Ross berhenti dalam pengembangan pada Mei 1993, Fred Van Kempen mulai bekerja pada implementasi yang baru, menulis ulang bagian terbesar dalam kode. Proyek ini dikenal dengan Net-2. Peluncuran yang pertama adalah Net-2d, dibuat pada musim panas 1993, dan telah dibantu kembangkan oleh beberapa orang, terutama Alan Cox. Hasil pekerjaan Alan dikenal dengan nama Net-3 setelah Linux 1.0 diluncurkan. Kode Net-3 masih dikembangkan lebih lanjut untuk Linux 1.2 dan Linux 2.0. Kernel 2.2 dan seterusnya menggunakan versi Net-4 untuk mendukung jaringan, yang masih tetap menjadi standar sampai saat ini.

Kode untuk jaringan Linux Net-4 menawarkan berbagai macam driver dan kemampuan khusus. Protokol standar Net-4 mencakup :

Sedangkan kemampuan standar Net-4 mencakup firewall IP, penghitungan IP, dan IP masquerade. IP tunneling dalam berbagai sudut dan kebijaksanaan routing juga didukung. Dukungan untuk berbagai macam tipe perlatan ethernet, untuk mendukung FDDI, Token Ring, Frame Relay, ISDN, dan kartu ATM.

Sebagai tambahan ada beberapa kemampuan yang sangat mendukung fleksibilitas dari Linux. Kemampuan ini termasuk implementasi sistem berkas SMB, yang bekerja bersama dengan aplikasi seperti lanmanager dan Ms. Windows, yang disebut Samba, yang diciptakan oleh Andrew Tridgell, dan sebuah implementasi Novell NCP (Protokol Inti Netware).

Implementasi jaringan Net-4 sekarang cukup matang dan digunakan dalam banyak situs di seluruh dunia. Banyak waktu yang tersita untuk meningkatkan kemampuan implementasi Net-4. Linux juga seringkali digunakan dalam lingkungan penyedia jasa Internet (ISP).

Sedangkan kemampuan standar Net-4 mencakup firewall IP, penghitungan IP, dan IP masquerade. IP tunneling dalam berbagai sudut dan kebijaksanaan routing juga didukung. Dukungan untuk berbagai macam tipe perlatan ethernet, untuk mendukung FDDI, Token Ring, Frame Relay, ISDN, dan kartu ATM.

Sebagai tambahan ada beberapa kemampuan yang sangat mendukung fleksibilitas dari Linux. Kemampuan ini termasuk implementasi sistem berkas SMB, yang bekerja bersama dengan aplikasi seperti lanmanager dan Ms. Windows, yang disebut Samba, yang diciptakan oleh Andrew Tridgell, dan sebuah implementasi Novell NCP (Protokol Inti Netware).

Implementasi jaringan Net-4 sekarang cukup matang dan digunakan dalam banyak situs di seluruh dunia. Banyak waktu yang tersita untuk meningkatkan kemampuan implementasi Net-4. Linux juga seringkali digunakan dalam lingkungan penyedia jasa Internet (ISP). Linux digunakan untuk membangun World Wide Web (WWW) server, mail server, dan news server yang murah dan terjamin. Sekarang ini sudah ada pengembangan yang cukup besar dalam Linux, dan beberapa versi kernel Linux saat ini menawarkan generasi terbaru IPv6 sebagai suatu standar.

Mengingat besarnya peran timbal balik antara pengembangan Linux dan jaringan, mungkin akan sulit bagi kita untuk membayangkan Linux tanpa dukungan jaringan yang standar.

Kita akan membahas tiga macam tipe jaringan, tapi fokus utama akan diarahkan pada TCP/IP karena protokol inilah yang paling populer digunakan baik dalam jaringan lokal (LAN) maupun jaringan yang lebih besar (WAN), seperti Internet. Kita juga akan mempelajari UUCP dan IPX. Dahulu kala UUCP banyak digunakan untuk mengirim berita (news) dan pesan (mail) melalui koneksi telepon dialup. Memang saat ini UUCP sudah jarang digunakan, tapi tetap masih berguna dalam situasi tertentu. Sedangkan protokol IPX banyak digunakan dalam lingkungan Novell Netware dan di bagian belakang akan dijelaskan lebih lanjut cara mengkoneksikan mesin Linux anda dengan jaringan Novell. Ketiganya merupakan protokol jaringan dan digunakan untuk medium pengiriman data antar komputer.

Kita mendefinisikan jaringan sebagai kumpulan host yang dapat berkomunikasi satu dengan lainnya, yang seringkali bergantung pada pelayanan (service) dari beberapa host komputer yang dikhususkan fungsinya sebagai relay data antar komputer. Host biasanya berupa komputer, tapi tidak selalu, X terminal dan printer cerdas juga bisa dianggap sebagai suatu host. Sekelompok kecil host disebut sebagai situs.

Komunikasi adalah mustahil tanpa bahasa atau kode yang dapat digunakan untuk komunikasi. Dalam jaringan komputer, bahasa ini seringkali dianalogikan protokol. Tapi perlu diingat, anda tidak bisa membayangkan protokol ini adalah suatu aturan yang tertulis, tapi lebih sebagai kode yang telah diformat sedemikian hingga. Dalam bahasa yang sama, protokol digunakan dalam jaringan komputer adalah bukan apa-apa melainkan suatu aturan tegas untuk pertukaran pesan antara dua atau lebih host.

Jaringan TCP/IP

Aplikasi jaringan moderen membutuhkan pendekatan yang kompleks untuk memindahkan data dari satu mesin ke mesin lainnya. Jika anda mengatur sebuah mesin Linux dengan banyak user, tiap pengguna mungkin secara simultan ingin terhubung dengan remote host dalam jaringan. Anda harus memikirkan cara sehingga mereka bisa berbagai jaringan tanpa harus menggangu yang lain.

Pendekatan yang digunakan dalam protokol jaringan moderen adalah packet switching. Sebuah paket adalah sebagian kecil data yang ditransfer dari satu mesin ke mesin lainnya melalui sebuah jaringan. Proses switching berlangsung ketika datagram dikirim melalui tiap link dalam jaringan. Sebuah jaringan dengan packet switching saling berbagi sebuah link jaringan tunggal diantara banyak pengguna dengan mengirim paket dari satu pengguna ke pengguna lainnya melalui link tersebut.

Pemecahan yang digunakan oleh sistem UNIX dan banyak sistem lainnya adalah dengan mengadapatasikan TCP/IP. Di atas sudah disebutkan mengenai datagram, secara teknis datagram tidak memiliki definisi yang khusus tetapi seringkali disejajarkan artinya dengan paket.

Protokol Internet (IP)

Tentu, anda tidak menginginkan jaringan dibatasi hanya untuk satu ethernet atau satu koneksi data point to point. Secara ideal, anda ingin bisa berkomunikasi dengan host komputer diluar tipe jaringan yang ada. Sebagai contoh, dalam instalasi jaringan yang besar, biasanya anda memiliki beberapa jaringan terpisah yang harus disambung dengan motode tertentu.

Koneksi ini ditangani oleh host yang dikhususkan sebagai gateway yang menangani paket yang masuk dan keluar dengan mengkopinya antara dua ethernet dan kabel optik. Gateway akan bertindak sebagai forwarder. Tata kerja dengan mengirimkan data ke sebuah remote host disebut routing, dan paket yang dikirim seringkali disebut sebagai datagram dalam konteks ini. Untuk memfasilitasisasi hal ini, pertukaran datagram diatur oleh sebuah protokol yang independen dari perangkat keras yang digunakan, yaitu IP (Internet Protocol).

Keuntungan utama dari IP adalah IP mengubah jaringan yang tidak sejenis menjadi jaringan yag homogen. Inilah yang disebut sebagai Internetworking, dan sebagai hasilnya adalah internet. Perlu dibedakan antara sebuah internet dan Internet, karena Internet adalah definisi resmi dari internet secara global.

Tentu saja, IP juga membutuhkan sebuah perangkat keras dengan cara pengalamatan yang independen. Hal ini diraih dengan memberikan tiap host sebuah 32 bit nomor yang disebut alamat IP. Sebuah alamat IP biasanya ditulis sebagai empat buah angka desimal, satu untuk tiap delapan bit, yang dipisahkan oleh koma. Pengalamatan dengan nama IPv4 (protokol internet versi 4)ini lama kelamaan menghilang karena standar baru yang disebut IPv6 menawarkan pengalamatan yang lebih fleksibel dan kemampuan baru lainnya.

Setelah apa yang kita pelajari sebelumnya, ada tiga tipe pengalamatan, yaitu ada nama host, alamat IP dan alamat perangkat keras, seperti pengalamatan pada alamat enam byte pada ethernet.

Untuk menyederhanakan peralatan yang akan digunakan dalam lingkungan jaringan, TCP/IP mendefinisikan sebuah antar muka abstrak yang melaluinya perangkat keras akan diakses. Antar muka menawarkan satu set operasi yang sama untuk semua tipe perangkat keras dan secara mendasar berkaitan dengan pengiriman dan penerimaan paket.

Sebuah antar muka yang berkaitan harus ada di kernel, untuk setiap peralatan jaringan. Sebagai contoh, antar muka ethernet di Linux, memiliki nama eth0 dan eth1, antar muka PPP memiliki nama ppp0 dan ppp1, sedangkan antar muka FDDI memiliki nama fddi0 dan fddi1. Semua nama antar muka ini bertujuan untuk konfigurasi ketika anda ingin mengkonfigurasinya, dan mereka tidak memiliki arti lain dibalik fungsinya.

Sebelum digunakan oleh jaringan TCP/IP, sebuah antar muka harus diberikan sebuah alamat IP yang bertugas sebagai tanda pengenal ketika berkomunikasi dengan yang lain. Alamat ini berbeda dengan nama antar muka yang telah disebutkan sebelumnya; jika anda menganalogikan sebuah antar muka dengan pintu, alamat IP seperti nomor rumah yang tergantung di pintu tersebut.

Paramater peralatan yang lain, mungkin sekali untuk diatur, misalnya ukuran maksimum datagram yang dapat diproses oleh sebuah nomor port keras, yang biasanya disebut Unit Transfer Maksimum atau Maximum Transfer Unit (MTU). Protokol Internet (IP) mengenali alamat dengan 32 bit nomor. Tiap mesin diberikan sebuah nomor yang unik dalam jaringan. Jika anda menjalankan sebuah jaringan lokal yang tidak memiliki route TCP/IP dengan jaringan lain, anda harus memberikan nomor tersebut menurut keinginan anda sendiri. Ada beberapa alamat IP yang sudah ditetapkan untuk jaringan khusus. Sebuah domain untuk situs di Internet, alamatnya diatur oleh badan berotoritas, yaitu Pusat Informasi Jaringan atau Network Information Center(NIC).

Alamat IP terbagi atas 4 kelompok 8 bit nomor yang disebut oktet untuk memudahkan pembacaan. Sebagai contoh quark.physics.groucho.edu memiliki alamat IP 0x954C0C04, yang dituliskan sebagai 149.76.12.4. Format ini seringkali disebut notasi quad bertitik. Alasan lain untuk notasi ini adalah bahwa alamat IP terbagi atas nomor jaringan, yang tercantum dalam oktet pertama, dan nomor host, pada oktet sisanya. Ketika mendaftarkan alamat IP ke NIC, anda tidak akan diberikan alamat untuk tiap host yang anda punya. Melainkan, anda hanya diberikan nomor jaringan, dan diizinkan untuk memberikan alamat IP dalam rentang yang sudah ditetapkan untuk tiap host sesuai dengan keinginan anda sendiri.

Banyaknya host yang ada akan ditentukan oleh ukuran jaringan itu sendiri. Untuk mengakomodasikan kebutuhan yang berbeda-beda, beberapa kelas jaringan ditetapkan untuk memenuhinya, antara lain:

  1. Kelas A

    Terdiri atas jaringan 1.0.0.0 sampai 127.0.0.0. Nomor jaringan ada pada oktet pertama. Kelas ini menyediakan alamat untuk 24 bit host, yang dapat menampung 1,6 juta host per jaringan.

  2. Kelas B

    Terdiri atas jaringan 128.0.0.0 sampai 191.255.0.0. Nomor jaringan ada pada dua oktet yang pertama. Kelas ini menjangkau sampai 16.320 jaringan dengan masing-masing 65024 host.

  3. Kelas C

    Terdiri atas jaringan 192.0.0.0 sampai 223.255.255.0. Nomor jaringan ada pada tiga oktet yang pertama. Kelas ini menjangkau hingga hampir 2 juta jaringan dengan masing-masing 254 host.

  4. Kelas D, E, dan F

    Alamat jaringan berada dalam rentang 224.0.0.0 sampia 254.0.0.0 adalah untuk eksperimen atau disediakan khusus dan tidak merujuk ke jaringan manapun juga. IP muliticast, yang adalah service yang mengizinkan materi untuk dikirim ke banyak tempat di Internet pada suatu saat yang sama, sebelumnya telah diberikan alamat dalam rentang ini.

Oktet 0 dan 255 tidak dapat digunakan karena telah dipesan sebelumnya untuk kegunaan khusus. Sebuah alamat yang semua bagian bit host-nya adalah 0 mengacu ke jaringan, sedang alamat yang semua bit host-nya adalah 1 disebut alamat broadcast. Alamat ini mengacu pada alamat jaringan tertentu secara simultan. Sebagai contoh alamat 149.76.255.255 bukanlah alamat host yang sah, karena mengacu pada semua host di jaringan 149.76.0.0.

Sejumlah alamat jaringan dipesan untuk kegunaan khusus. 0.0.0.0 dan 127.0.0.0 adalah contohnya. Alamat yang pertama disebut default route, sedangkan yang kedua adalah alamat loopback.

Jaringan 127.0.0.0 dipesan untuk lalu lintas IP lokal menuju ke host anda. Biasanya alamat 127.0.0.1 akan diberikan ke suatu antar muka khusus pada host anda, yaitu antar muka loopback, yang bertindak seperti sebuah sirkuit tertutup. Paket IP yang dikirim ke antar muka ini dari TCP atau UDP akan dikembalikan lagi. Hal ini akan membantu anda untuk mengembangkan dan mengetes perangkat lunak jaringan tanpa harus menggunakan jaringan yang sesungguhnya. Jaringan loopback juga memberikan anda kemudahan menggunakan perangkat lunak jaringan pada sebuah host yang berdiri sendiri. Proses ini tidak seaneh seperti kedengarannya. Sebagai contoh banyak situs UUCP yang tidak memiliki konektivitas sama sekali, tapi tetap ingin menggunakan sistem news INN. Supaya dapat beroperasi dengan baik di Linux, INN membutuhkan antar muka loopback.

Beberapa rentang alamat dari tiap kelas jaringan telah diatur dan didesain ‘pribadi’ atau ‘dipesan’. Alamat ini dipesan untuk kepentingan jaringan pribadi dan tidak ada di rute internet. Biasanya alamat ini digunakan untuk organisasi untuk menciptakan intranet untuk mereka sendiri, bahkan jaringan yang kecil pun akan merasakan kegunaan dari alamat itu.

Rentang Alamat IP untuk fungsi khusus

Kelas jaringan

Protokol Pengontrol Transmisi (TCP)

Mengirimkan datagram dari satu host ke host bukanlah segalanya. Jika anda login, informasi yang dikirim harus dibagi menjadi beberapa paket oleh si pengirim dan digabungkan kembali menjadi sebuah karakter stream oleh si penerima. Proses ini memang tampaknya sederhana tapi sebenarnya tidak sesederhana kelihatannya.

Sebuah hal penting yang harus anda ingat adalah bahwa IP tidak menjamin. Asumsikan bahwa ada sepuluh orang dalam ethernet yang mulai men-download, maka jumlah lalu lintas data yang tercipta mungkin akan terlalu besar bagi sebuah gateway untuk menanganinya dengan segala keterbatasan yang ada. IP menyelesaikan masalah ini dengan membuangnya. Paket yang dikirim akan hilang tanpa bisa diperbaiki. Karenanya host harus bertanggungjawab untuk memeriksa integritas dan kelengkapan data yang dikirim dan pengiriman ulang data jika terjadi error.

Proses ini dilakukan oleh protokol lain, TCP (Transmision Control Protocol), yang menciptakan pelayanan yang terpercaya di atas IP. Karakteristik inti dari TCP adalah bahwa TCP menggunakan IP untuk memberikan anda ilusi dari koneksi sederhana antara dua proses di host dan remote machine. Jadi anda tidak perlu khawatir tentang bagaimana dan route mana yang ditempuh oleh data. Sebuah koneksi TCP bekerja seperti sebuah pipa dua arah dimana proses dari kedua arah bisa menulis dan membaca. Pikirkan hal ini seperti halnya sebuah pembicaraan melalui telepon.

TCP mengidentifikasikan titik ujung dari sebuah koneksi dengan alamat IP dari kedua host yang terlibat dan jumlah port yang dimiliki oleh tiap-tiap host. Port dapat dilihat sebagai sebuah titik attachment untuk tiap koneksi jaringan. Jika kita lebih mendalami contoh telepon sebelumnya, dan anda dapat membayangkan kota sebagai suatu host, kita dapat membandingkan alamat IP dengan kode area (dimana nomor IP akan dipetakan ke kota), dan nomor port dengan kode lokal (dimana nomor port dipetakan ke nomor telepon). Sebuah host tunggal bisa mendukung berbagai macam service, yang masing-masing dibedakan dari nomor port-nya.

Dalam contoh login, aplikasi client membuka port dan terhubung ke port di server dimana dia login. Tindakan ini akan membangun sebuah koneksi TCP. Dengan menggunakan koneksi ini, login service akan menjalankan prosedur autorisasi dan memunculkan shell. Standar masukan dan keluaran dari shell akan disambungkan ke koneksi TCP, jadi apapun yang anda ketik ke login service, akan dikirimkan melalui TCP stream dan dikirimkan ke shell sebagai standar masukan.

Protokol Pengontrol Pesan di Internet (ICMP)

IP memiliki protokol lain yang mendampinginya yang belum pernah kita bahas sebelumnya, yaitu ICMP (Internet Control Message Protocol). ICMP digunakan oleh kode jaringan di kernel untuk mengkomunikasikan pesan error ke host lainnya. Sebagai contoh, anda ingin melakukan telnet, tapi tidak ada proses yang menangkap pesan tersebut di port. Ketika paket TCP pertama untuk port tersebut tiba, lapisan jaringan akan mengenalinya dan kemudian akan langsung mengembalikan sebuah pesan ICMP yang menyatakan bahwa port tidak dapat dijangkau.

Protokol ICMP menyediakan beberapa pesan yang berbeda, dimana banyak dari pesan tersebut berhubungan dengan kondisi error. Tapi bagaimana pun juga, ada suatu pesan yang menarik yang disebut pesan redirect. Pesan ini dihasilkan oleh modul routing ketika tertedeteksi bahwa ada host lain yang menggunkannya sebagai gateway, walaupun ada rute yang lebih pendek. Sebagai contoh, setelah melakukan booting, tabel routingnya kemungkinan tidak lengkap. Tabel ini mungkin berisi rute ke jaringan lain. Sehingga paket yang dikirim tidak sampai ke tujuannya, malah sampai ke jaringan lain. Ketika menerima sebuah datagram, maka server yang menerimanya akan menyadari bahwa rute tersebut adalah pilihan rute yang buruk dan meneruskannya ke jaringan lain.

Hal ini sepertinya jalan terbaik untuk menghindari pengaturan seting secara manual, kecuali setingan dasarnya saja. Tapi bagaimana pun juga, waspadalah selalu untuk tidak terlalu bergantung pada skema routing yang dinamis, baik itu RIP ataupun pesan indirect ICMP. Indirect ICMP dan RIP menawarkan anda sedikit atau tidak sama sekali pilihan untuk memverifikasi bahwa beberapa informasi routing memerlukan autentifikasi. Sebagai konsekuensi, kode jaringan Linux mengancam pesan indirect jaringan seakan-akan mereka adalah indirect host . Hal ini akan meminimalkan kerusakan yang diakibatkan oleh serangan dan membatasinya hanya ke satu host saja, daripada keseluruhan jaringan. Pada sisi yang lain, ini berarti sedikit lalu lintas dihasilkan dalam kejadian dari suatu kondisi yang masuk akal, seakan-akan tiap host menyebabkan terbentuknya pesan indirect ICMP. Sebenarnya ketergantungan pada ICMP tidak langsung dianggap sebagai suatu yang buruk.

Protokol Datagram Pengguna (UDP)

Tentu saja, TCP bukanlah satu-satunya protokol dalam jaringan TCP/IP. Walaupun TCP cocok untuk aplikasi untuk login, biaya yang dibutuhkan terbatas untuk aplikasi semacam NFS, dimana lebih baik kita menggunakan saudara sepupu dari TCP yang disebut UDP ( User Datagram Protocol. Seperti halnya TCP, UDP memperbolehkan sebuah aplikasi untuk menghubungi sebuah service pada port tertentu dari remote machine, tapi untuk itu tidak diperlukan koneksi apa pun juga. Sebaliknya, anda bisa mengirimkan paket tunggal ke pelayanan tujuan, apa pun juga namanya.

Asumsikan bahwa anda ingin menggunakan sejumlah kecil data dari server basis data. Pengambilan data tersebut membutuhkan minimal tiga datagram untuk membangun sebuah koneksi TCP, tiga lainnya untuk mengirim dan mengkonfirmasikan sejumlah kecil data tiap kali jalan, sedangkan tiga lainnya dibutuhkan untuk menutup koneksi. UDP menyediakan kita pelayanan yang sama dengan hanya menggunakan dua datagram. UDP bisa dikatakan hanya membutuhkan sedikit koneksi, dan tidak menuntut kita untuk membangun dan menutup koneksi. Kita hanya perlu untuk meletakkan data kita pada datagram dan mengirimkannya ke server. server akan memformulasikan balasannya, meletakkan data balasan ke dalam datagram yang dialamatkan kembali ke kita, dan mengirimkan balik. Walaupun UDP lebih cepat dan efisien daripada TCP untuk transaksi yang sederhana, UDP tidak didesain untuk menghadapi hilangnya datagram pada saat pengiriman. Semuanya tergantung pada aplikasi, sebagai contoh mungkin nama server, untuk menangani hal ini.

IPX dan Sistem Berkas NCP

Sejarah dan Latar Belakang Xerox dan Novell

Lama sebelum Microsoft mempelajari jaringan, dan bahkan sebelum Internet dikenal di luar lingkup kehidupan akademis, perusahaan membagi sumber daya untuk berkas dan printer berdasarkan sistem operasi Novel NetWare dan protokol yang berkaitan. Banyak dari penggunanya masih menggunakan protokol ini dan ingin mengintegrasikannya dengan dukungan dari TCP/IP.

Linux tidak hanya mendukung protokol TCP/IP, tapi juga seperangkat protokol yang digunakan oleh sistem operasi Novel NetWare. Protokol ini masih merupakan saudara sepupu dari TCP/IP, dan sementara mereka menjalankan fungsi yang relatif sama, tapi dari segi cara yang digunakan, berbeda dan tidak kompatibel. Linux tidak hanya menyediakan perangkat lunak gratis tapi juga yang komersial untuk menyediakan dukungan pelayanan untuk diintegrasikan dengan produk Novell. Kita akan memberikan deskripsi ringkas mengenai protokol yang digunakan.

Pertama-lama, mari kita lihat darimana protokol tersebut berasal dan seperti apakah bentuknya? Pada akhir tahun 1970, perusahaan Xerox mengembangkan dan menerbitkan sebuah standar terbuka yang disebut Xerox Network Specification (XNS). Standar tersebut menjelaskan mengenai seperangkat protokol yang didesain untuk internetworking secara umum, dengan kegunaan utama pada jaringan lokal. Ada dua protokol jaringan yang terlibat: Internet Datagram Protocol, yang menyediakan pengiriman datagram yang tidak terjamin dan tanpa koneksi dari satu host ke host lain dan Sequenced Packet Protokol (SPP), yang merupakan modifikasi dari IDP yang berbasiskan koneksi dan lebih terjamin. Datagram pada jaringan XNS diberikan alamat secara individual. Skema pengalamatan menggunakan kombinasi dari 4 byte alamat jaringan IDP dan 6 byte alamat node (alamat dari kartu jaringan). Router adalah alat yang mengatur perpindahan datagram antar dua atau lebih jaringan IDP. IDP tidak memiliki sub jaringan; Kumpulan dari host yang baru membutuhkan alamat jaringan yang lain untuk dipergunakan. Alamat jaringan dipilih sedemikian rupa sehingga alamat tersebut unik dalam internetwork. Terkadang administrator mengembangkan konvensi dengan aturan tiap byte men-encode beberapa informasi lain, seperti lokasi geografik, sehingga alamat jaringan dialokasikan secara sistematik; walaupun begitu, hal ini bukanlah merupakan suatu syarat mutlak dari protokol jaringan.

Perusahaan Novell memilih untuk mendasarkan paket jaringam mereka pada paket XNS. Novell menciptakan sedikit perubahan ke IDP dan SPP, dan menamakannya Paket Pertukaran di Internet atau Internet Packet Xchange (IPX) dan pertukaran Paket yang Berurut atau Sequenced Packet Xchange (SPX). Novell menambahkan beberapa protokol baru, seperti NetWare Core Protocol (NCP), yang menyediakan kemampuan untuk berbagi sumber daya berkas dan printer yang dapat berjalan melalui IPX, dan Service Advertisement Protocol (SAP). Dimana SAP memungkinkan host dalam jaringan Novell untuk mengetahui persis host yang menyediakan masing-masing service.

Berikut ini disajikan data relasi antara XNS, Novell, dan perangkat TCP/IP dalam hal fungsi. Relasi ini hanya perkiraan saja, tapi sedikit banyak akan membantu anda untuk memahami apa yang sebenarnya terjadi ketika kita merujuk ke protokol tersebut.

===================================================================

XNS Novell TCP/IP Kemampuan

===================================================================

IDP -IPX– UDP/IP Sedikit koneksi, pengiriman tidak terjamin

SPP -SPX– -TCP– Banyak menggunakan koneksi, pengiriman terjamin

— -NCP– -NFS– Pelayanan berkas

— -RIP– -RIP– Pertukaran informasi routing

— -SAP– —— Pelayanan pengadaan pertukaran informasi

===================================================================

IPX dan Linux

Dukungan untuk IPX pertama kali dikembangkan oleh Alan Cox pada tahun 1985. Secara mendasar, IPX berguna sedikit lebih dari sekedar me-routing datagram IPX. Sejak saat itu, pengembang lain, terutama Greg Page, telah menambahkan beberapa dukungan tambahan. Greg mengembangkan utilitas kofigurasi IPX yang akan digunakan untuk mengkonfigurasi antar muka kita. Volker Lendecke mengembangkan dukungan untuk sistem berkas NCP sehingga Linux bisa melakukan mount pada server sistem berkas NetWare yang terhubung dalam jaringan. Beliau juga menciptakan perangkat lunak yang bisa melakukan pencetakan dari dan ke Linux. Sedangkan Ales Dryak dan Stover masing-masing mengembangkan juga pelayanan sistem berkas NCP untuk Linux yang memungkinkan client NetWare yang terkoneksi dalam jaringan untuk mount direktori Linux yang diekspor sebagai NCP, seperti halnya NFS serviceyang memungkinkan Linux untuk melayani sistem berkas pada client yang menggunakan protokol NFS.

NetWare Directory Service (NDS)

Bersamaan dengan NetWare versi empat, Novell juga memperkenalkan sebuah kemampuan yang disebut NetWare Directory Service (NDS). Spesifikasi dari NDS tidak tersedia tanpa perjanjian, sebuah aturan yang mengekang pengembangan pengembangan dukungan pelayanan gratis. Hanya versi 2.2.0 dan selanjutnya dari paket ncpfs yang memiliki dukungan terhadap NDS. Dukungan ini dikembangkan dengan teknik terbalik dari protokol NDS. Dukungan ini sepertinya berjalan dengan baik, tapi sebenarnya masih dalam tahap eksperimen. Anda dapat menggunakan perangkat lunak bukan DNS dengan server NetWare 4, dengan adanya mode emulasi biner.

Perangkat lunak Caldera memiliki dukungan yang penuh terhadap NDS karena penerapannya mendapatkan lisensi yang penuh dari Novell. Walaupun begitu penerapannya tidak gratis. Jadi anda tidak memiliki akses yang penuh ke kode sumbernya dan tidak akan dapat memperbanyak dan mendistribusikan perangkat lunak tersebut.

Keamanan

Pendahuluan

Mengapa Kita Perlu Pengamanan?

Banyak pertanyaan yang mungkin timbul di pikiran kita. Mengapa kita membutuhkan kemanan, atau seberapa aman, atau apa yang hendak kita lindungi, seberapa pentingkah data kita sehingga perlu memusingkan diri dengan masalah keamanan. Pertama akan dijelaskan mengapa kita membutuhkan keamanan. Dalam dunia global dengan komunikasi data yang selalu berkembang dengan pesat dari waktu ke waktu, koneksi internet yang semakin murah, masalah keamanan seringkali luput dari perhatian pemakai komputer dan mulai menjadi isu yang sangat serius. Keamanan data saat ini telah menjadi kebutuhan dasar karena perkomputeran secara global telah menjadi tidak aman. Sementara data anda berpindah dari satu titik ke titik lainnya di Internet, mungkin data tersebut melewati titik – titik lain dalam perjalanannya, yang memberikan kesempatan kepada orang lain untuk mengganggunya. Bahkan mungkin beberapa pengguna dari sistem anda, mengubah data yang dimiliki menjadi sesuatu yang tidak anda inginkan. Akses yang tidak terotorisasi ke dalam sistem anda mungkin bisa diperoleh oleh penyusup, yang disebut ‘cracker‘, yang kemudian menggunakan kemampuannya untuk mencuri data, atau pun melakukan hal – hal lain yang merupakan mimpi buruk bagi anda.

Seberapa Aman?

Sekarang kita akan mempelajari lebih jauh mengenai seberapa tinggi tingkat kemanan yang kita miliki, atau pun kita perlukan. Satu hal yang perlu diingat adalah tidak ada satu sistem komputer pun yang memiliki sistem keamanan yang sempurna. Hal yang dapat anda lakukan hanya mencoba meminimalisir celah keamanan yang ada. Untuk pengguna Linux rumahan yang hanya menggunakannya untuk keperluan pribadi saja di rumah, mungkin tidak perlu memikirkan terlalu banyak tindakan pencegahan. Tetapi untuk pengguna Linux yang termasuk dalam skala besar, seperti bank dan perusahaan telekomunikasi, banyak usaha ekstra keras yang harus dilakukan.

Hal lain yang perlu diingat adalah semakin aman sistem yang anda miliki, maka sistem komputer akan menjadi semakin merepotkan. Anda harus menyeimbangkan antara kenyamanan pemakaian sistem dan proteksi demi alasan keamanan. Sebagai contoh, anda bisa saja memaksa orang lain yang ingin masuk ke dalam sistem anda untuk menggunakan call-back modem untuk melakukan panggilan balik melalui nomor telepon rumah mereka. Cara ini kelihatannya memang lebih aman, tapi jika tidak ada seorang pun di rumah, akan menyulitkan mereka untuk login. Anda juga dapat mengatur konfigurasi sistem Linux anda tanpa jaringan atau koneksi ke Internet, tapi pembatasan ini akan membatasi kegunaan jaringan itu sendiri.

Jika anda memiliki situs dengan ukuran menengah sampai besar, anda harus membangun seperangkat kebijakan dalam hal keamanan yang menyatakan tingkat keamanan yang diperlukan. Anda dapat menemukan berbagai informasi mengenai contoh kebijakan dalam hal keamanan yang umum digunakan di http://www.faqs.org/rfcs/rfc2196.html. Informasi ini sering diperbarui, dan berisi lingkup kerja yang bagus untuk mengembangkan kebijakan keamanan untuk perusahaan anda.

Apa yang Anda Coba Lindungi?

Sebelum anda berusaha melakukan pengamanan terhadap sistem yang anda miliki, anda harus menentukan terlebih dahulu beberapa hal. Hal – hal yang perlu dipikirkan, yaitu tingkat ancaman yang harus anda antisipasi, resiko yang harus diambil, dan seberapa kebal sistem anda sebagai hasil usaha yang telah anda lakukan. Anda harus menganalisa sistem anda untuk mengetahui apa yang anda lindungi, kenapa anda melindunginya, seberapa besar nilai data yang anda lindungi, dan siapa yang bertanggung jawab terhadap data dan aset lain dalam sistem anda.

Resiko adalah kemungkinan dimana seorang penyusup mungkin bisa berhasil dalam usahanya untuk mengakses komputer anda. Dapatkah seorang penyusup membaca atau menulis berkas, atau pun mengeksekusi program yang dapat menyebabkan kerusakan? Dapatkah mereka menghapus data yang penting? Sebagai tambahan, memiliki account yang tidak aman dalam sistem anda dapat berakibat kecurian pada jaringan anda. Anda harus memutuskan siapa yang anda percaya untuk mengakses sistem dan siapa yang dapat menimbulkan ancaman bagi sistem anda.

Ada beberapa tipe penyusup yang karakteristiknya berbeda satu dengan lainnya, diantaranya:

  1. The Curious Penyusup tipe ini pada dasarnya tertarik mencari tahu tipe sistem dan data yang anda miliki.
  2. The Malicious Penyusup tipe ini, mengganggu sistem sehingga tidak dapat bekerja dengan optimal, merusak halaman situs web anda, atau pun memaksa anda untuk menghabiskan banyak uang dan waktu untuk memperbaiki kerusakan yang dibuatnya.
  3. The High-Profile Intruder Penyusup tipe ini mencoba menyusup ke dalam sistem anda untuk mendapatkan ketenaran dan pengakuan. Kemungkinan dia akan menggunakan sistem anda yang canggih sebagai sarana untuk membuatnya terkenal karena telah berhasil menyusup sistem kemanan komputer anda.
  4. The Competition Penyusup tipe ini tertarik pada data yang dimiliki oleh sistem anda. Penyusup ini mungkin adalah seseorang yang berpikir ada sesuatu yang berharga yang dapat memberikan keuntungan baginya.
  5. The Borrowers Penyusup tipe ini akan menggunakan sumber daya yang kita miliki untuk kepentingan mereka sendiri. Biasanya penyusup ini akan menjalankannya sebagai server chatting (irc), situs porno, atau bahkan server DNS.
  6. The Leapfrogger Penyusup tipe ini hanya tertarik menggunakan sistem yang anda miliki untuk masuk ke dalam sistem lain. Jika sistem anda terhubung atau merupakan sebuah gateway ke sejumlah host internal, anda akan menyaksikan penyusup tipe ini sedang berusaha untuk berkompromi dengan sistem yang anda miliki.

Mengembangkan Suatu Kebijaksanaan Keamanan

Ciptakanlah kebijakan yang sederhana dan umum digunakan, dimana tiap pengguna dalam sistem anda dapat mengerti dan mengikutinya. Kebijakan tersebut harus dapat melindungi data anda sendiri sebagaimana melindungi kerahasiaan dari tiap pengguna. Beberapa hal yang perlu dipertimbangkan adalah: siapa sajakah yang memiliki akses ke sistem anda, siapa sajakah yang diizinkan untuk menginstall program ke dalam sistem, siapa memiliki data apa, perbaikan terhadap kerusakan yang mungkin terjadi, dan penggunaan yang wajar dari sistem.

Sebuah kebijakan mengenai keamanan yang dapat diterima secara umum dimulai dengan pernyataan “Mereka yang tidak diizinkan, dilarang masuk”. Artinya, kecuali anda memberikan izin akses kepada service atas seorang pengguna, maka pengguna tersebut haruslah tidak bisa melakukan apa – apa sampai anda memberikan izin akses kepadanya. Yakinkan bahwa kebijakan yang anda buat, dapat berjalan dengan baik pada account pengguna biasa. Dengan mengatakan “Ah, saya tidak habis pikir mengenai masalah perizinannya” atau “Saya malas”, biasanya seseorang akan melakukan segala sesuatunya sebagai root. Hal ini dapat menyebabkan terciptanya lubang keamanan yang belum ada sebelumnya. rfc1244 adalah dokumentasi yang menjelaskan cara untuk membuat kebijakan keamanan jaringan sendiri. Sedangkan dokumentasi yang menjelaskan mengenai contoh kebijakan keamanan dengan deskripsi yang lengkap untuk tiap tahapnya dapat anda lihat di rfc1281.

Mengamankan Situs Anda

Dokumen ini mendiskusikan berbagai macam cara untuk mengamankan aset anda. Sebagai contoh mesin lokal anda, data anda, pengguna anda, jaringan anda, dan bahkan reputasi anda sendiri. Apa yang akan terjadi pada reputasi anda, jika seorang penyusup berhasil menghapus sebagian pengguna data anda? Atau merusak situs web anda? Atau bahkan menerbitkan rencana proyek perusahaan anda untuk beberapa tahun kedepan? Jika anda berencana untuk membangun sebuah instalasi jaringan, ada banyak faktor yang harus anda perhitungkan sebelum menambahkan satu demi satu mesin ke dalam jaringan anda.

Bahkan dengan account panggilan PPP tunggal anda, atau bahkan sebuah situs kecil, bukan berarti si penyusup tidak tertarik pada sistem yang anda miliki. Situs – situs raksasa bukanlah satu – satunya target sasaran, karena banyak penyusup yang ingin mengeksploitasi sebanyak mungkin situs yang ada, seberapa pun juga ukurannya. Sebagai tambahan mereka mungkin menggunakan lubang keamanan dalam situs anda untuk memperoleh akses ke situs lain yang mereka tuju. Penyusup tidak perlu melakukan tebak – tebakan mengenai cara anda mengamankan sistem karena mereka memiliki banyak waktu. Kemungkinan besar cara yang mereka gunakan adalah mencoba semua kemungkinan yang ada (brute force).

Keamanan Fisik

Lapisan kemanan pertama yang harus anda perhitungkan adalah keamanan secara fisik dalam sistem komputer anda. Siapa saja yang memiliki akses secara langsung ke sistem? Apakah mereka memang berhak? Dapatkah anda melindungi sistem anda dari maksud dan tujuan mereka? Apakah hal tersebut perlu anda lakukan?

Berapa banyak keamanan fisik yang berada dalam sistem anda memiliki ketergantungan terhadap situasi yang anda hadapi, dan tentu saja anggaran. Apabila anda adalah pengguna rumahan, maka kemungkinan anda tidak membutuhkan banyak. Tapi jika anda berada di laboratorium, atau pun jaringan komputer tempat anda bekerja, banyak yang harus anda pikirkan. Secara nyata dan jelas, metode keamanan secara fisik yang bisa dilakukan antara lain dengan mngunci pintu, kabel, laci, tapi semuanya itu diluar pembahasan dalam bagian ini.

Kunci Komputer

Banyak komputer pribadi saat ini yang memiliki kemampuan mengunci. Biasanya kunci ini berupa soket pada bagian depan casing yang bisa dimasukkan kunci untuk mengunci mau pun membukanya, Kunci casing dapat membantu mencegah seseorang untuk mencuri dari komputer, atau membukanya secara langsung untuk memanipulasi atau pun mencuri perangkat keras yang anda miliki. Kunci ini juga berguna untuk mencegah orang tertentu untuk mereboot komputer anda dari disket mau pun perangkat keras lainnya.

Kunci casing ini melakukan hal-hal yang berbeda menurut fasilitas yang ditawarkan oleh motherboard dan bagaimana struktur casing itu sendiri. Pada banyak komputer pribadi, perusahaan pembuat menciptakan casing tersebut sedemikian rupa sehingga anda harus menghancurkannya untuk membukanya. Sedangkan pada tipe casing yang lain, keyboard mau pun mouse baru tidak dapat dipasangkan ke dalamnya. Periksalah mainboard anda, mau pun instruksinya untuk informasi lebih lanjut. Kadang – kadang hal ini bisa menjadi sangat berguna, walau pun kunci yang digunakan seringkali berkualitas rendah dan dapat dengan mudah dikalahkan oleh si penyerang dengan metode pembukaan kunci yang dimilikinya.

Beberapa mesin terutama SPARC dan Mac punya pengaman di bagian belakangnya, sehingga jika ada yang memasukkan kabel ke dalamnya, si penyerang harus memotong kabelnya atau merusak casing untuk masuk ke dalamnya. Dengan meletakkan padlock atau combo lock akan menjadi pengamanan yang cukup baik untuk mencegah orang lain mencuri mesin anda.

Keamanan BIOS

BIOS adalah tingkatan terendah dari perangkat lunak yang mengkonfigurasi atau memanipulasi perangkat keras anda. BIOS adalah singkatan dari Basic Input Output System. LILO dan berbagai metode boot Linux lainnya mengakses BIOS untuk menentukan cara untuk memboot mesin Linux anda. Perangkat keras lain yang dijalankan dengan Linux memiliki perangkat lunak yang mirip (Open Firmware di Mac dan new Suns, Sun boot PROM, dll). Anda dapat menggunakan BIOS untuk mencegah penyerang untuk mem-boot komputer dan memanipulasi sistem Linux anda.

Banyak BIOS komputer yang bisa diset kata kuncinya. Walau pun begitu, keamanan belum terjamin karena seseorang bisa saja menset ulang BIOS atau pun membuangnya jika ada orang yang mampu memasuki casing-nya. Mirip dengan itu, EEPROM S/Linux dapat diset untuk memenuhi sebuah kata kunci boot. Hal ini mungkin dapat memperlambat gerak si penyerang. Resiko lainnya dari mempercayai kata kunci BIOS untuk mengamankan sistem anda adalah masalah kata kunci yang digunakan. Kebanyakan pembuat BIOS tidak berharap pembeli untuk membuka komputernya dan mencabut baterai untuk menghilangkan kata kuncinya apabila mereka lupa. Pembuat BIOS ini seringkali melengkapi BIOS mereka dengan kata kunci standar dari pembuatnya.

Banyak BIOS dari komputer dengan sistem Intel i386 memberikan kemudahan untuk mengatur berbagai macam seting keamanan. Periksalah manual BIOS anda atau lihatlah pada saat anda akan melakukan boot up lagi. Sebagai contoh, beberapa BIOS tidak mengizinkan anda untuk mem- boot dari disket dan menuntut kata kunci untuk mengakses fasilitas tertentu dari BIOS. Sebagai catatan, jika anda memiliki mesin server, dan anda mengeset sebuah kata kunci boot, mesin anda tidak akan melakukan boot tanpa sepengetahuan dari anda sendiri. Ingatlah bahwa anda harus masuk ke ruangan server dan menyediakan kata kunci setiap kali terjadi penurunan daya listrik.

Keamanan Boot Loader

Berbagai macam boot loader Linux juga memiliki seperangkat kata kunci boot. Sebagai contoh, LILO memiliki kata kunci dan beberapa seting tertutup. LILO akan meminta masukan berupa kata kunci dari pengguna, sementara seting tertutup meminta kata kunci boot-time jika anda menambahkan option (misalnya single) di prompt LILO.

Ingatlah selalu kata kunci yang anda masukkan pada saat seting. Juga jangan lupa bahwa kata kunci tersebut akan memperlambat gerakan beberapa hacker. Jika anda menerapkan keamanan dalam boot-loader, aturlah BIOS anda sehingga komputer tidak bisa diboot dari disket, dan berikan kata kunci pada BIOS anda.

Jangan lupa juga untuk menset atribut berkas /etc/lilo.conf menjadi 600 (rw- — —), yang artinya berkas tersebut hanya bisa dibaca dan ditulis oleh root. Jika tidak, orang lain akan dapat mengetahui kata kunci anda. Jika anda memiliki sebuah server, dan memberikan kata kunci boot, maka mesin anda tidak akan dapat mem-boot tanpa seizin anda. Ingatlah bahwa anda harus datang dan memasukkan kata kunci setiap kali terjadi masalah dengan daya listrik pada ruangan di mana server berada.

Keamanan Lokal

Hal berikutnya yang akan kita perhatikan lebih lanjut adalah keamanan sistem terhadap serangan dari pengguna lokal. Mendapatkan akses ke account pengguna lokal adalah hal pertama yang dilakukan oleh penyusup sistem untuk memperoleh account root. Dengan sistem keamanan yang lemah, seorang pengguna biasa dapat menjadi root dengan menggunakan berbagai macam bug yang ada dan service dari localhost yang rentan. Jika anda yakin, bahwa sistem keamanan anda cukup baik, maka si penyusup akan mencari jalan lain untuk menyusup ke sistem anda.

Membuat Account Baru

Anda harus yakin bahwa anda menyediakan account pengguna dengan keleluasaan minimal sesuai dengan tugas yang akan mereka kerjakan. Jika anda menyediakan account kepada seorang anak berumur 10 tahun, anda mungkin hanya akan memberikan akses ke program pengolah kata dan program menggambar kepadanya, sehingga dia tidak bisa menghapus berkas yang bukan miliknya sendiri.

Beberapa tips yang mungkin bisa membantu membatasi akses:

Keamanan Root

Account root memiliki akses penuh terhadap keseluruhan sistem. Ingat jangan menggunakan account root dengan sembarangan. Gunakan account root hanya untuk mengerjakan suatu pekerjaan khusus saja dan lakukan dalam jangka waktu yang tidak terlalu lama. Biasakan untuk menggunakan account pengguna biasa untuk menjalankan aplikasi sehari – hari. Bahkan kesalahan terkecil yang dilakukan pada saat login sebagai root dapat menyebabkan kekacauan yang fatal.

Beberapa trik untuk menghindari kekacauan ketika login sebagai root:

Perangkat Lunak Bebas

Serba-Serbi PLB

Perangkat lunak bebas merupakan suatu bentuk pengembangan perangkat lunak yang dikembangkan melalui proyek GNU (GNU’s Not Unix, GNU Bukan Unix). Proyek ini mulai dirintis pada tahun 1980-an dipicu dengan mulainya masa perangkat lunak berpemilik (perangkat lunak berlisensi). Pihak-pihak pengembang perangkat lunak berpemilik Menekankan bahwa penggunaan perangkat lunak tanpa lisensi merupakan suatu bentuk pelanggaran Hak atas Kekayaan Intelektual (HKI) dan merupakan suatu tindakan kriminal. Konsep yang ditekankan oleh pihak pengembang diatas tidak diterima oleh semua orang, terdapat orang-orang seperti Richard Stallman (perintis proyek GNU) yang memiliki pendapat bahwa perangkat lunak merupakan milik masyarakat sehingga diperbolehkan untuk dimodifikasi dan disebarluaskan secara bebas. Pengembangan perangkat lunak bebas memiliki tujuan agar setiap orang dapat mendapatkan manfaat dari perangkat lunak secara bebas sehingga setiap orang dapat menjalankan, menggandakan, menyebarluaskan, mempelajari, mengubah dan meningkatkan kinerja perangkat lunak.

Kata bebas pada perangkat lunak bebas sering diartikan sebagai gratis (free), arti sesungguhnya bebas pada perangkat lunak bebas lebih merupakan kebebasan untuk mempergunakan perangkat lunak, melakukan penyalinan, dan perubahan pada kode sumber. Arti bebas yang salah, telah menimbulkan persepsi masyarakat bahwa perangkat lunak bebas merupakan perangkat lunak yang gratis.

Perangkat lunak bebas ialah perihal kebebasan, bukan harga. Konsep kebebasan yang dapat diambil dari kata bebas pada perangkat lunak bebas adalah seperti kebebasan berbicara bukan seperti bir gratis. Maksud dari bebas seperti kebebasan berbicara adalah kebebasan untuk menggunakan, menyalin, menyebarluaskan, mempelajari, mengubah, dan meningkatkan kinerja perangkat lunak.

Suatu perangkat lunak dapat dimasukkan dalam kategori perangkat lunak bebas bila setiap orang memiliki kebebasan tersebut. Hal ini berarti, setiap pengguna perangkat lunak bebas dapat meminjamkan perangkat lunak yang dimilikinya kepada orang lain untuk dipergunakan tanpa perlu melanggar hukum dan disebut pembajak.

Kebebasan yang diberikan perangkat lunak bebas dijamin oleh copyleft, suatu cara yang dijamin oleh hukum untuk melindungi kebebasan para pengguna perangkat lunak bebas. Dengan adanya copyleft maka suatu perangkat lunak bebas beserta hasil perubahan dari kode sumbernya akan selalu menjadi perangkat lunak bebas. Kebebasan yang diberikan melalui perlindungan copyleft inilah yang membuat suatu program dapat menjadi perangkat lunak bebas.

Keuntungan yang diperoleh dari penggunaan perangkat lunak bebas adalah karena serbaguna dan efektif dalam keanekaragaman jenis aplikasi. Dengan pemberian source code-nya, perangkat lunak bebas dapat disesuaikan secara khusus untuk kebutuhan pemakai. Sesuatu yang tidak mudah untuk terselesaikan dengan perangkat lunak berpemilik Selain itu, perangkat lunak bebas didukung oleh milis-milis pengguna yang dapat menjawab pertanyaan yang timbul karena permasalahan pada penggunaan perangkat lunak bebas.

Pembagian Perangkat Lunak

Perangkat Lunak Bebas

Perangkat lunak bebas ialah perangkat lunak yang mengizinkan siapa pun untuk menggunakan, menyalin, dan mendistribusikan, baik dimodifikasi atau pun tidak, secara gratis atau pun dengan biaya. Perlu ditekankan, bahwa source code dari program harus tersedia. “Jika tidak ada kode program, berarti bukan perangkat lunak bebas.” Yang tersebut di atas merupakan definisi sederhananya; lihat juga definisi lengkapnya.

Terdapat berbagai cara untuk membuat suatu program bebas— banyak pertanyaan rinci, yang dapat ditentukan dalam banyak cara dan masih menjadikan program tersebut bebas. Beberapa kemungkinan variasi akan dijelaskan di bawah ini.

Perangkat lunak bebas menyangkut masalah kebebasan, bukan harga. Tapi beberapa perusahaan perangkat lunak berpemilik terkadang menggunakan istilah perangkat lunak bebas untuk menunjukkan harga. Terkadang maksud mereka ialah anda dapat memperoleh salinan biner tanpa biaya; terkadang maksud mereka ialah suatu salinan disertakan dalam komputer yang anda beli. Ini tidak ada hubungannya sama sekali dengan apa yang di maksud dengan perangkat lunak bebas pada proyek GNU.

Karena hal ini dapat membingungkan, ketika sebuah perusahaan perangkat lunak menyatakan bahwa produknya adalah perangkat lunak bebas, selalu periksa ketentuan distribusinya untuk melihat apakah pengguna memiliki kebebasan yang dimaksudkan oleh istilah perangkat lunak bebas. Terkadang memang benar-benar perangkat lunak bebas; namun terkadang tidak.

Banyak bahasa memiliki dua kata yang berbeda untuk menyatakan “bebas” sebagai kebebasan dan “bebas” sebagai tanpa biaya. Sebagai contoh, bahasa Perancis memiliki kata “libre” dan “gratuit”. Dalam bahasa Inggris terdapat kata “gratis” yang menyatakan tentang harga tanpa membingungkan. Tapi tidak ada kata sifat yang menyatakan kebebasan tanpa membingungkan. Hal ini sangat disayangkan, karena kata semacam itu akan sangat berguna disini.

Perangkat lunak bebas seringkali lebih handal daripada perangkat lunak tidak bebas.

Perangkat Lunak Copylefted

Perangkat lunak copylefted merupakan perangkat lunak bebas yang ketentuan pendistribusinya tidak memperbolehkan untuk menambah batasan-batasan tambahan–jika mendistribusikan atau memodifikasi perangkat lunak tersebut. Artinya, setiap salinan dari perangkat lunak, walau pun telah dimodifikasi, haruslah merupakan perangkat lunak bebas.

Dalam proyek GNU, kami meng-copyleft-kan hampir semua perangkat lunak yang kami buat, karena tujuan kami adalah untuk memberikan kebebasan kepada semua pengguna seperti yang tersirat dalam istilah “perangkat lunak bebas”.

Copyleft merupakan konsep yang umum. Jadi, untuk meng-copyleft-kan sebuah program, anda harus menggunakan ketentuan distribusi tertentu. Terdapat berbagai cara untuk menulis perjanjian distribusi program copyleft.

Perangkat Lunak Bebas Non-copylefted

Perangkat lunak bebas non-copylefted dibuat oleh pembuatnya yang mengizinkan seseorang untuk mendistribusikan dan memodifikasi, dan untuk menambahkan batasan-batasan tambahan dalamnya. Jika suatu program bebas tapi tidak copylefted, maka beberapa salinan atau versi yang dimodifikasi bisa jadi tidak bebas sama sekali. Perusahaan perangkat lunak dapat mengkompilasi programnya, dengan atau tanpa modifikasi, dan mendistribusikan file tereksekusi sebagai produk perangkat lunak yang berpemilik.

Sistem X Window menggambarkan hal ini. Konsorsium X mengeluarkan X11 dengan ketentuan distribusi yang menetapkannya sebagai perangkat lunak bebas non-copylefted. Jika anda menginginkannya, anda dapat memperoleh salinan yang memiliki perjanjian distribusi dan juga bebas. Namun ada juga versi tidak bebasnya, dan ada workstation terkemuka serta perangkat grafik PC, dimana versi yang tidak bebas merupakan satu-satunya yang dapat bekerja disini. Jika anda menggunakan perangkat keras tersebut, X11 bukanlah perangkat lunak bebas bagi anda.

Sistem GNU

Sistem GNU merupakan sistem serupa Unix yang seutuhnya bebas. Sistem operasi serupa Unix terdiri dari berbagai program. Sistem GNU mencakup seluruh perangkat lunak GNU, dan juga paket program lain, seperti sistem X Windows dam TeX yang bukan perangkat lunak GNU.

Kami telah mengembangkan dan mengumpulkan komponen untuk sistem GNU ini sejak tahun 1984. Pengedaran awal (percobaan) dari “sistem GNU lengkap” dilakukan tahun 1996. Sekarang (2001), sistem GNU ini bekerja secara handal, serta orang-orang bekerja dan mengembangkan GNOME, dan PPP dalam sistem GNU. Pada saat bersamaan sistem GNU/Linux, merupakan sebuah terobosan dari sistem GNU yang menggunakan Linux sebagai kernel dan mengalami sukses luar biasa.

Berhubung tujuan dari GNU ialah untuk kebebasan, maka setiap komponen dalam sistem GNU harus merupakan perangkat lunak bebas. Namun tidak berarti semuanya harus copylefted; setiap jenis perangkat lunak bebas dapat sah-sah saja jika menolong memenuhi tujuan teknis. Seseorang dapat menggunakan perangkat lunak non-copylefted seperti sistem X Window.

Perangkat Lunak Semi-Bebas

Perangkat lunak semi-bebas adalah perangkat lunak yang tidak bebas, tapi mengizinkan setiap orang untuk menggunakan, menyalin, mendistribusikan, dan memodifikasinya (termasuk distribusi dari versi yang telah dimodifikasi) untuk tujuan non-laba. PGP adalah salah satu contoh dari program semi-bebas.

Perangkat lunak semi-bebas jauh lebih baik dari perangkat lunak berpemilik, namun masih ada masalah, dan seseorang tidak dapat menggunakannya pada sistem operasi yang bebas.

Pembatasan dari copyleft dirancang untuk melindungi kebebasan bagi semua pengguna. Bagi pihak GNU, satu-satunya alasan untuk membatasi substantif dalam menggunakan program–ialah melarang orang lain untuk menambahkan batasan lain. Program semi-bebas memiliki batasan-batasan tambahan, yang dimotivasi oleh tujuan pribadi semata.

Sangat mustahil untuk menyertakan perangkat lunak semi-bebas pada sistem operasi bebas. Hal ini karena perjanjian distribusi untuk sistem operasi keseluruhan adalah gabungan dari perjanjian distribusi untuk semua program di dalamnya. Menambahkan satu program semi-bebas pada sistem akan membuat keseluruhan sistem menjadi semi-bebas. Terdapat dua alasan mengapa GNU tidak menginginkan hal ini:

Sudah seharusnya kita percaya bahwa perangkat lunak bebas seharusnya ditujukan bagi semuanya–termasuk pelaku bisnis, dan bukan hanya untuk sekolah dan sekedar hobi saja. GNU ingin mengundang kalangan bisnis untuk menggunakan keseluruhan sistem GNU, dan untuk itu kami tidak dapat menyertakan program semi-bebas di dalamnya.

Distribusi komersial dari sistem operasi bebas, termasuk Sistem GNU/Linux sangat penting, dan para pengguna menghargai kemampuan untuk dapat membeli distribusi CD-ROM komersial. Menyertakan satu program semi-bebas dalam sistem operasi dapat memotong distribusi CD-ROM komersial untuknya.

Free Software Foundation sendiri adalah organisasi nirlaba, dan karena itu, kami diizinkan secara hukum untuk menggunakan program semi-bebas secara “internal”. Tapi GNU tidak melakukannya, karena hal itu akan melemahkan upaya yang telah dilakukan untuk memperoleh program yang dapat disertakan ke dalam GNU.

Jika ada pekerjaan yang berhubungan dengan perangkat lunak, maka sebelum kami memiliki program bebas untuk melakukan pekerjaan itu, sistem GNU memiliki kesenjangan. Kami harus memberitahukan kepada para sukarelawan, “Kami belum memiliki program untuk melakukan pekerjaan ini di GNU, jadi kami berharap Anda menulisnya sendiri.” Jika program semi-bebas digunakan untuk untuk melakukan pekerjaan itu, hal itu akan melemahkan apa yang telah dijelaskan diatas; hal itu akan menghancurkan motivasi (bagi pengembang GNU, dan orang lain yang memiliki pandangan yang sama) untuk menulis substitusi yang bebas.

Perangkat Lunak Berpemilik

Perangkat lunak berpemilik ialah perangkat lunak yang tidak bebas atau pun semi-bebas. Seseorang dapat dilarang, atau harus meminta izin, atau akan dikenakan pembatasan lainnya sehingga menyulitkan–jika menggunakan, mengedarkan, atau memodifikasinya.

Free Software Foundation mengikuti aturan bahwa seseorang tidak dapat memasang program-program berpemilik di komputernya kecuali untuk sementara waktu dengan maksud menulis pengganti bebas untuk program tersebut. Disamping itu, pihak perangkat lunak bebas merasa tidak; ada alasan untuk memasang sebuah program berpemilik.

Sebagai contoh, pengemban GNU merasa sah dalam memasang Unix di komputer yang digunakan pada tahun 1980-an, sebab kami menggunakannya untuk menulis pengganti bebas untuk Unix. Sekarang, karena sistem operasi bebas telah tersedia, alasan ini tidak lagi dapat diterima; pihak GNU harus menghapus semua sistem operasi tidak bebas yang dimiliki, dan setiap komputer yang dipasang harus berjalan pada sistem operasi yang benar-benar bebas.

GNU tidak memaksa para pengguna GNU atau para kontributor GNU untuk mengikuti aturan ini. Ini adalah aturan yang dibuat untuk diri kami sendiri (GNU). Tapi kami berharap agar anda memutuskan untuk mengikutinya juga.

Perangkat Lunak Komersial

Perangkat lunak komersial adalah perangkat lunak yang dikembangkan oleh kalangan bisnis untuk memperoleh keuntungan dari penggunaannya. “Komersial” dan “kepemilikan” adalah dua hal yang berbeda! Kebanyakan perangkat lunak komersial adalah berpemilik, tapi ada perangkat lunak bebas komersial, dan ada perangkat lunak tidak bebas dan tidak komersial.

Sebagai contoh, GNU Ada selalu didistribusikan di bawah perjanjian GNU GPL, dan setiap salinannya adalah perangkat lunak bebas; tapi para pengembangnya menjual kontrak penunjang. Ketika penjualnya bicara kepada calon pembeli, terkadang pembeli tersebut mengatakan, “Kami merasa lebih aman dengan kompilator komersial.” Si penjual menjawab, “GNU Ada ialah kompilator komersial; hanya saja ia merupakan perangkat lunak bebas.”

Bagi proyek GNU, penekanannya ada pada hal yang sebaliknya: hal terpenting ialah GNU Ada merupakan perangkat lunak bebas; terlepas komersial atau bukan, itu bukan hal yang penting. Namun perkembangan tambahan GNU Ada yang dihasilkan dari komersialismenya adalah menguntungkan.

Harap sebarkan ke khalayak, perangkat lunak bebas komersial merupakan sesuatu yang mungkin. Sebaiknya, anda jangan mengatakan “komersial” ketika maksud anda ialah “berpemilik”.

 

 

Ditulis dalam Linux. Leave a Comment »

Kernel Linux

Sejarah

Linux sangat mirip dengan sistem-sistem UNIX, hal ini dikarenakan kompatibilitas dengan UNIX merupakan tujuan utama desain dari proyek Linux. Perkembangan Linux dimulai pada tahun 1991, ketika mahasiswa Finlandia bernama Linus Torvalds menulis Linux, sebuah kernel untuk prosesor 80386, prosesor 32-bit pertama dalam kumpulan CPU intel yang cocok untuk PC.

Pada awal perkembangannya, source code Linux disediakan secara bebas melalui Internet. Hasilnya, sejarah Linux merupakan kolaborasi banyak user dari seluruh dunia, semuanya dilakukan secara eksklusif melalui Internet. Dari kernel awal yang hanya mengimplementasikan subset kecil dari sistem UNIX, sistem Linux telah bertumbuh dimana sudah mampu memasukkan banyak fungsi UNIX.

Kernel Linux perlu dibedakan dari sebuah sistem Linux: kernel Linux merupakan sebuah perangkat lunak orisinil yang dibuat oleh komunitas Linux sedangkan sistem Linux, yang diketahui saat ini, mengandung banyak komponen yang dibuat sendiri atau dipinjam dari proyek lain.

Kernel Linux

Kernel Linux pertama yang dipublikasikan adalah versi 0.01, pada tanggal 14 Maret, 1991. Sistem berkas yang didukung hanya sistem berkas Minix – kernel pertama dibuat berdasarkan kerangka Minix. Tetapi, kernel tersebut sudah mengimplementasi proses UNIX secara tepat.

Tanggal 14 Maret, 1994, versi yang merupakan tonggak sejarah Linux yaitu versi 1.0 keluar. Rilis ini adalah kulminasi dari tiga tahun perkembangan yang cepat dari kernel Linux. Fitur baru terbesar yang disediakan adalah jaringan: 1.0 mampu mendukung protokol standar jaringan TCP/IP. Kernel 1.0 juga memiliki sistem berkas yang lebih baik tanpa batasan-batasan sistem berkas Minix. Sejumlah dukungan perangkat keras ekstra juga dimasukkan ke dalam rilis ini. Dukungan perangkat keras telah berkembang termasuk diantaranya floppy-disk, CD-ROM, sound card, berbagai mouse, dan keyboard internasional. Dukungan buat modul kernel yang dynamically loadable dan unloadable juga diberikan.

Satu tahun setelah dirilis versi 1.0, kernel 1.2 keluar. Kernel versi 1.2 mendukung variasi perangkat keras yang lebih luas. Pengembang telah memperbaharui networking stack untuk menyediakan support bagi protokol IPX, dan membuat implementasi IP lebih komplit dengan memberikan fungsi accounting dan firewalling. Kernel 1.2 juga merupakan kernel Linux terakhir yang PC-only. Konsentrasi lebih diberikan pada dukungan perangkat keras dan memperbanyak implementasi lengkap pada fungsi-fungsi yang ada.

Akhirnya pada bulan Juni 1996, Linux 2.0 dirilis. Versi 2.0 memiliki dua kemampuan baru yang penting, yaitu: dukungan terhadap multiple architectures dan multiprocessor architectures. Kode untuk manajemen memori telah diperbaiki sehingga performa sistem berkas dan memori virtual meningkat. Untuk pertama kalinya, file system caching dikembangkan ke networked file systems, writable memory mapped regions juga sudah didukung. Kernel 2.0 sudah memberikan performa TCP/IP yang lebih baik, ditambah dengan sejumlah protokol jaringan baru. Kemampuan untuk memakai remote Netware dan SMB (Microsoft LanManager) network volumes juga telah ditambahkan pada versi terbaru ini. Tambahan lain adalah dukungan internal kernel threads, penanganan dependencies antara modul-modul loadable, dan loading otomatis modul berdasarkan permintaan (on demand). Konfigurasi dinamis dari kernel pada run time telah diperbaiki melalui konfigurasi interface yang baru dan standar.

Sistem Linux

Dalam banyak hal, kernel Linux merupakan inti dari proyek Linux, tetapi komponen lainlah yang membentuk secara komplit sistem operasi Linux. Dimana kernel Linux terdiri dari kode-kode yang dibuat khusus untuk proyek Linux, kebanyakan perangkat lunak pendukungnya tidak eksklusif terhadap Linux, melainkan biasa dipakai dalam beberapa sistem operasi yang mirip UNIX. Contohnya, sistem operasi BSD dari Berkeley, X Window System dari MIT, dan proyek GNU dari Free Software Foundation.

Pembagian (sharing) alat-alat telah bekerja dalam dua arah. Sistem perpustakaan utama Linux awalnya dimulai oleh proyek GNU, tetapi perkembangan perpustakaannya diperbaiki melalui kerjasama dari komunitas Linux terutama pada pengalamatan, ketidak efisienan, dan bugs. Komponen lain seperti GNU C Compiler, gcc, kualitasnya sudah cukup tinggi untuk dipakai langsung dalam Linux. Alat-alat administrasi network dibawah Linux berasal dari kode yang dikembangkan untuk 4.3BSD, tetapi BSD yang lebih baru , salah satunya FreeBSD, sebaliknya meminjam kode dari Linux, contohnya adalah perpustakaan matematika Intel floating-point-emulation.

Sistem Linux secara keseluruhan diawasi oleh network tidak ketat yang terdiri dari para pengembang melalui internet, dengan grup kecil atau individu yang memiliki tanggung jawab untuk menjaga integritas dari komponen- komponen khusus. Dokumen ‘File System Hierarchy Standard‘ juga dijaga oleh komunitas Linux untuk memelihara kompatibilitas keseluruh komponen sistem yang berbeda-beda. Aturan ini menentukan rancangan keseluruhan dari sistem berkas Linux yang standar.

Distribusi Linux

Siapa pun dapat menginstall sistem Linux, ia hanya perlu mengambil revisi terakhir dari komponen sistem yang diperlukan melalui situs ftp lalu di-compile. Pada awal keberadaan Linux, operasi seperti di atas persis seperti yang dilaksanakan oleh pengguna Linux. Namun, dengan semakin dewasanya Linux, berbagai individu dan kelompok berusaha membuat pekerjaan tersebut lebih mudah dengan cara menyediakan sebuah set bingkisan yang standar dan sudah di-compile terlebih dahulu supaya dapat diinstall secara mudah.

Koleksi atau distribusi ini, mengandung lebih dari sistem Linux dasar. Mereka mengandung instalasi sistem ekstra dan utilitas manajemen, juga paket yang sudah di compile dan siap diinstall dari banyak alat UNIX yang biasa, seperti news servers, web browsers, text-processing dan alat mengedit, termasuk juga games.

Distribusi pertama mengatur paket-paket ini secara sederhana menyediakan sebuah sarana untuk memindahkan seluruh file ke tempat yang sesuai. Salah satu kontribusi yang penting dari distribusi modern adalah manajemen/ pengaturan paket-paket yang lebih baik. Distribusi Linux pada saat sekarang ini melibatkan database packet tracking yang memperbolehkan suatu paket agar dapat diinstal, di upgrade, atau dihilangkan tanpa susah payah.

Distribusi SLS (Soft Landing System adalah koleksi pertama dari bingkisan Linux yang dikenal sebagai distribusi komplit. Walau pun SLS dapat diinstall sebagai entitas tersendiri, dia tidak memiliki alat-alat manajemen bingkisan yang sekarang diharapkan dari distribusi Linux. Distribusi Slackware adalah peningkatan yang besar dalam kualitas keseluruhan (walau pun masih memiliki manajemen bingkisan yang buruk); Slackware masih merupakan salah satu distribusi yang paling sering diinstall dalam komunitas Linux.

Sejak dirilisnya Slackware, sejumlah besar distribusi komersil dan non-komersil Linux telah tersedia. Red Hat dan Debian adalah distribusi yang terkenal dari perusahaan pendukung Linux komersil dan perangkat lunak bebas komunitas Linux. Pendukung Linux komersil lainnya termasuk distribusi dari Caldera, Craftworks, dan Work- Group Solutions. Contoh distribusi lain adalah SuSE dan Unifix yang berasal dari German.

Lisensi Linux

Kernel Linux terdistribusi dibawah Lisensi Publik Umum GNU (GPL), dimana peraturannya disusun oleh Free Software Foundation. Linux bukanlah perangkat lunak domain publik (public domain): Public Domain berarti bahwa pengarang telah memberikan copyright terhadap perangkat lunak mereka, tetapi copyright terhadap kode Linux masih dipegang oleh pengarang-pengarang kode tersebut. Linux adalah perangkat lunak bebas, namun: bebas dalam arti bahwa siapa saja dapat mengkopi, modifikasi, memakainya dengan cara apa pun, dan memberikan kopi mereka kepada siapa pun tanpa larangan atau halangan.

Implikasi utama peraturan lisensi Linux adalah bahwa siapa saja yang menggunakan Linux, atau membuat modifikasi dari Linux, tidak boleh membuatnya menjadi hak milik sendiri. Jika sebuah perangkat lunak dirilis berdasarkan lisensi GPL, produk tersebut tidak boleh didistribusi hanya sebagai produk biner (binary-only). Perangkat lunak yang dirilis atau akan dirilis tersebut harus disediakan sumber kodenya bersamaan dengan distribusi binernya.

Linux Saat Ini

Saat ini, Linux merupakan salah satu sistem operasi yang perkembangannya paling cepat. Kehadiran sejumlah kelompok pengembang, tersebar di seluruh dunia, yang selalu memperbaiki segala fiturnya, ikut membantu kemajuan sistem operasi Linux. Bersamaan dengan itu, banyak pengembang yang sedang bekerja untuk memindahkan berbagai aplikasi ke Linux (dapat berjalan di Linux).

Masalah utama yang dihadapi Linux dahulu adalah interface yang berupa teks (text based interface). Ini membuat orang awam tidak tertarik menggunakan Linux karena harus dipelajari terlebih dahulu untuk dapat dimengerti cara penggunaannya (tidak user-friendly). Tetapi keadaan ini sudah mulai berubah dengan kehadiran KDE dan GNOME. Keduanya memiliki tampilan desktop yang menarik sehingga mengubah persepsi dunia tentang Linux.

Linux di negara-negara berkembang mengalami kemajuan yang sangat pesat. Harga perangkat lunak (misalkan sebuah sistem operasi) bisa mencapai US $100 atau lebih. Di negara yang rata-rata penghasilan per tahun adalah US $200-300, US $100 sangatlah besar. Dengan adanya Linux, semua berubah. Karena Linux dapat digunakan pada komputer yang kuno, dia menjadi alternatif cocok bagi komputer beranggaran kecil. Di negara-negara Asia, Afrika, dan Amerika Latin, Linux adalah jalan keluar bagi penggemar komputer.

Pemanfaatan Linux juga sudah diterapkan pada supercomputer. Diberikan beberapa contoh:

Jika melihat ke depan, kemungkinan Linux akan menjadi sistem operasi yang paling dominan bukanlah suatu hal yang mustahil. Karena semua kelebihan yang dimilikinya, setiap hari semakin banyak orang di dunia yang mulai berpaling ke Linux.

Tux: Logo Linux

Logo Linux adalah sebuah pinguin. Tidak sepert produk komersil sistem operasi lainnya, Linux tidak memiliki simbol yang terlihat hebat. Melainkan Tux, nama pinguin tersebut, memperlihatkan sikap santai dari gerakan Linux. Logo yang lucu ini memiliki sejarah yang unik. Awalnya, tidak ada logo yang dipilih untuk Linux, namun pada waktu Linus (pencipta Linux) berlibur, ia pergi ke daerah selatan. Disanalah dia bertemu seekor pinguin yang pendek cerita menggigit jarinya. Kejadian yang lucu ini merupakan awal terpilihnya pinguin sebagai logo Linux.

Tux adalah hasil karya seniman Larry Ewing pada waktu para pengembang merasa bahwa Linux sudah memerlukan sebuah logo (1996), dan nama yang terpilih adalah dari usulan James Hughes yaitu “(T)orvalds (U)ni(X) — TUX!”. Lengkaplah sudah logo dari Linux, yaitu seekor pinguin bernama Tux.

Hingga sekarang logo Linux yaitu Tux sudah terkenal ke berbagai penjuru dunia. Orang lebih mudah mengenal segala produk yang berbau Linux hanya dengan melihat logo yang unik nan lucu hasil kerjasama seluruh komunitas Linux di seluruh dunia.

Prinsip Rancangan

Dalam rancangan keseluruhan, Linux menyerupai implementasi UNIX non-microkernel yang lain. Ia adalah sistem yang multi-user, multi-tasking dengan alat-alat UNIX-compatible yang lengkap. Sistem berkas Linux mengikuti semantik tradisional UNIX, dan model jaringan standar UNIX diimplementasikan secara keseluruhan. Ciri internal desain Linux telah dipengaruhi oleh sejarah perkembangan sistem operasi ini.

Walau pun Linux dapat berjalan pada berbagai macam platform, pada awalnya dia dikembangkan secara eksklusif pada arsitektur PC. Sebagian besar dari pengembangan awal tersebut dilakukan oleh peminat individual, bukan oleh fasilitas riset yang berdana besar, sehingga dari awal Linux berusaha untuk memasukkan fungsionalitas sebanyak mungkin dengan dana yang sangat terbatas. Saat ini, Linux dapat berjalan baik pada mesin multi-prosesor dengan main memory yang sangat besar dan ukuran disk space yang juga sangat besar, namun tetap mampu beroperasi secara berguna dengan jumlah RAM yang lebih kecil dari 4 MB.

Prinsip Desain Linux

Akibat semakin berkembangnya teknologi PC, kernel Linux juga semakin lengkap dalam mengimplementasikan fungsi UNIX. Cepat dan efisien merupakan tujuan desain yang penting, tetapi akhir-akhir ini konsentrasi perkembangan Linux lebih pada tujuan desain yang ketiga yaitu standarisasi. Standar POSIX terdiri dari kumpulan spesifikasi dari aspek berbeda kelakuan sistem operasi. Ada dokumen POSIX untuk fungsi sistem operasi biasa dan untuk ekstensi seperti proses untuk thread dan operasi real-time. Linux di desain supaya sesuai dengan dokumen POSIX yang relevan; sedikitnya ada dua distribusi Linux yang sudah memperoleh sertifikasi ofisial POSIX.

Karena Linux memberikan interface standar ke programmer dan pengguna, Linux tidak membuat banyak kejutan kepada siapa pun yang sudah terbiasa dengan UNIX. Namun interface pemrograman Linux merujuk pada semantik SVR4 UNIX daripada kelakuan BSD. Kumpulan perpustakaan yang berbeda tersedia untuk mengimplementasi semantik BSD di tempat dimana kedua kelakuan sangat berbeda.

Ada banyak standar lain di dunia UNIX, tetapi sertifikasi penuh Linux terhadap standar lain UNIX terkadang menjadi lambat karena lebih sering tersedia dengan harga tertentu (tidak secara bebas), dan ada harga yang harus dibayar jika melibatkan sertifikasi persetujuan atau kecocokan sebuah sistem operasi terhadap kebanyakan standar. Mendukung aplikasi yang luas penting untuk semua sistem operasi sehingga implementasi dari standar merupakan tujuan utama pengembangan Linux walau pun implementasinya tidak sah secara formal. Selain standar POSIX, Linux saat ini mendukung ekstensi thread POSIX dan subset dari ekstensi untuk kontrol proses real-time POSIX.

Komponen Sistem Linux

Sistem Linux terdiri dari tiga bagian kode penting:

  1. Kernel: Bertanggung jawab memelihara semua abstraksi penting dari sistem operasi, termasuk hal seperti proses- proses dan memori virtual.
  2. Perpustakaan sistem: menentukan kumpulan fungsi standar dimana aplikasi dapat berinteraksi dengan kernel, dan mengimplementasi hampir semua fungsi sistem operasi yang tidak memerlukan hak penuh atas kernel.
  3. Utilitas Sistem: adalah program yang melakukan pekerjaan manajemen secara individu dan khusus.

Kernel

Walau pun berbagai sistem operasi modern telah mengadopsi sebuah arsitektur message-passing buat kernel internal mereka, Linux memakai model historis UNIX: kernel diciptakan sebagai biner yang tunggal dan monolitis. Alasan utama adalah untuk meningkatkan performa: Karena semua struktur data dan kode kernel disimpan dalam satu address space, alih konteks tidak diperlukan ketika sebuah proses memanggil sebuah fungsi sistem operasi atau ketika interupsi perangkat keras dikirim. Tidak hanya scheduling inti dan kode memori virtual menempati address space ini; semua kode kernel, termasuk semua device drivers, sistem berkas, dan kode jaringan, hadir dalam satu address space yang sama.

Kernel Linux membentuk inti dari sistem operasi Linux. Dia menyediakan semua fungsi yang diperlukan untuk menjalankan proses, dan disediakan servis sistem untuk memberikan pengaturan dan proteksi akses ke sumber daya (resource) perangkat keras. Kernel mengimplementasi semua fitur yang diperlukan supaya dapat bekerja sebagai sistem operasi. Namun, jika sendiri, sistem operasi yang disediakan oleh kernel Linux sama sekali tidak mirip dengan sistem UNIX. Dia tidak memiliki banyak fitur ekstra UNIX, dan fitur yang disediakan tidak selalu dalam format yang diharapkan oleh aplikasi UNIX. Interface dari sistem operasi yang terlihat oleh aplikasi yang sedang berjalan tidak dipelihara secara langsung oleh kernel. Melainkan, aplikasi membuat panggilan (calls) ke perpustakaan sistem, yang kemudian memanggil servis sistem operasi yang dibutuhkan.

Perpustakaan Sistem

Perpustakaan sistem menyediakan banyak tipe fungsi. Pada level yang paling mudah, mereka membolehkan aplikasi melakukan permintaan pada servis sistem kernel. Membuat sebuah panggilan sistem (system calls) melibatkan transfer kontrol dari mode user yang tidak penting ke mode kernel yang penting; detil dari transfer ini berbeda pada masing-masing arsitektur. Perpustakaan bertugas untuk mengumpulkan argumen system-call dan, jika perlu, mengatur argumen tersebut dalam bentuk khusus yang diperlukan untuk melakukan system call.

Perpustakaan juga dapat menyediakan versi lebih kompleks dari system call dasar. Contohnya, fungsi buffered file-handling dari bahasa C semuanya diimplementasi dalam perpustakaan sistem, yang berakibat kontrol yang lebih baik terhadap file I/O daripada yang disediakan oleh system call kernel dasar. Perpustakaan juga menyediakan rutin yang tidak ada hubungan dengan system call, seperti algoritma penyusunan (sorting), fungsi matematika, dan rutin manipulasi string (string manipulation). Semua fungsi yang diperlukan untuk mendukung jalannya aplikasi UNIX atau POSIX diimplementasikan dalam perpustakaan sistem.

Utilitas Sistem

Sistem linux mengandung banyak program-program user-mode: utilitas sistem dan utilitas user. Utilitas sistem termasuk semua program yang diperlukan untuk menginisialisasi sistem, seperti program untuk konfigurasi alat jaringan (network device) atau untuk load modul kernel. Program server yang berjalan secara kontinu juga termasuk sebagai utilitas sistem; program semacam ini mengatur permintaan user login, koneksi jaringan yang masuk, dan antrian printer.

Tidak semua utilitas standar melakukan fungsi administrasi sistem yang penting. Lingkungan pengguna UNIX mengandung utilitas standar dalam jumlah besar untuk melakukan pekerjaan sehari-hari, seperti membuat daftar direktori, memindahkan dan menghapus file, atau menunjukkan isi dari sebuah file. Utilitas yang lebih kompleks dapat melakukan fungsi text-processing, seperti menyusun data tekstual atau melakukan pattern-searches pada input teks. Jika digabung, utilitas-utilitas tersebut membentuk toolset standar yang diharapkan oleh user pada sistem UNIX mana saja; walau pun tidak melakukan fungsi sistem operasi apa pun, utilitas tetap merupakan bagian penting dari sistem Linux dasar.

Modul Kernel Linux

Pengertian Modul Kernel Linux

Modul kernel Linux adalah bagian dari kernel Linux yang dapat dikompilasi, dipanggil dan dihapus secara terpisah dari bagian kernel lainnya saat dibutuhkan. Modul kernel dapat menambah fungsionalitas kernel tanpa perlu me-reboot sistem. Secara teori tidak ada yang dapat membatasi apa yang dapat dilakukan oleh modul kernel. Kernel modul dapat mengimplementasikan antara lain device driver, sistem berkas, protokol jaringan.

Modul kernel Linux memudahkan pihak lain untuk meningkatkan fungsionalitas kernel tanpa harus membuat sebuah kernel monolitik dan menambahkan fungsi yang mereka butuhkan langsung ke dalam image dari kernel. Selain hal tersebut akan membuat ukuran kernel menjadi lebih besar, kekurangan lainnya adalah mereka harus membangun dan me-reboot kernel setiap saat hendak menambah fungsi baru. Dengan adanya modul maka setiap pihak dapat dengan mudah menulis fungsi-fungsi baru dan bahkan mendistribusikannya sendiri, di luar GPL.

Kernel modul juga memberikan keuntungan lain yaitu membuat sistem Linux dapat dinyalakan dengan kernel standar yang minimal, tanpa tambahan device driver yang ikut dipanggil. Device driver yang dibutuhkan dapat dipanggil kemudian secara eksplisit mau pun secara otomatis saat dibutuhkan.

Terdapat tiga komponen untuk menunjang modul kernel Linux. Ketiga komponen tersebut adalah managemen modul, registrasi driver, dan mekanisme penyelesaian konflik. Berikut akan dibahas ketiga komponen pendukung tersebut.

Managemen Modul Kernel Linux

Managemen modul akan mengatur pemanggilan modul ke dalam memori dan berkomunikasi dengan bagian lainnya dari kernel. Memanggil sebuah modul tidak hanya memasukkan isi binarinya ke dalam memori kernel, namun juga harus dipastikan bahwa setiap rujukan yang dibuat oleh modul ke simbol kernel atau pun titik masukan diperbaharui untuk menunjuk ke lokasi yang benar di alamat kernel. Linux membuat tabel simbol internal di kernel. Tabel ini tidak memuat semua simbol yang didefinisikan di kernel saat kompilasi, namun simbol-simbol tersebut harus diekspor secara eksplisit oleh kernel. Semua hal ini diperlukan untuk penanganan rujukan yang dilakukan oleh modul terhadap simbol-simbol.

Pemanggilan modul dilakukan dalam dua tahap. Pertama, utilitas pemanggil modul akan meminta kernel untuk mereservasi tempat di memori virtual kernel untuk modul tersebut. Kernel akan memberikan alamat memori yang dialokasikan dan utilitas tersebut dapat menggunakannya untuk memasukkan kode mesin dari modul tersebut ke alamat pemanggilan yang tepat. Berikutnya system calls akan membawa modul, berikut setiap tabel simbol yang hendak diekspor, ke kernel. Dengan demikian modul tersebut akan berada di alamat yang telah dialokasikan dan tabel simbol milik kernel akan diperbaharui.

Komponen managemen modul yang lain adalah peminta modul. Kernel mendefinisikan antarmuka komunikasi yang dapat dihubungi oleh program managemen modul. Saat hubungan tercipta, kernel akan menginformasikan proses managemen kapan pun sebuah proses meminta device driver, sistem berkas, atau layanan jaringan yang belum terpanggil dan memberikan manajer kesempatan untuk memanggil layanan tersebut. Permintaan layanan akan selesai saat modul telah terpanggil. Manajer proses akan memeriksa secara berkala apakah modul tersebut masih digunakan, dan akan menghapusnya saat tidak diperlukan lagi.

Resolusi Konflik

Keanekaragaman konfigurasi perangkat keras komputer serta driver yang mungkin terdapat pada sebuah komputer pribadi telah menjadi suatu masalah tersendiri. Masalah pengaturan konfigurasi perangkat keras tersebut menjadi semakin kompleks akibat dukungan terhadap device driver yang modular, karena device yang aktif pada suatu saat bervariasi.

Linux menyediakan sebuah mekanisme penyelesaian masalah untuk membantu arbitrasi akses terhadap perangkat keras tertentu. Tujuan mekanisme tersebut adalah untuk mencegah modul berebut akses terhadap suatu perangkat keras, mencegah autoprobes mengusik keberadaan driver yang telah ada, menyelesaikan konflik di antara sejumlah driver yang berusaha mengakses perangkat keras yang sama.

Kernel membuat daftar alokasi sumber daya perangkat keras. Ketika suatu driver hendak mengakses sumber daya melalui I/O port, jalur interrupt, atau pun kanal DMA, maka driver tersebut diharapkan mereservasi sumber daya tersebut pada basis data kernel terlebih dahulu. Jika reservasinya ditolak akibat ketidaktersediaan sumber daya yang diminta, maka modul harus memutuskan apa yang hendak dilakukan selanjutnya. Jika tidak dapat melanjutkan, maka modul tersebut dapat dihapus.

Manajemen Proses

Pendahuluan

Linux mengatur semua proses di dalam sistem melalui pemeriksaan dan perubahan terhadap setiap struktur data task_struct yang dimiliki setiap proses. Sebuah daftar pointer ke semua struktur data task_struct disimpan dalam task vector. Jumlah maksimum proses dalam sistem dibatasi oleh ukuran dari task vector. Linux umumnya memiliki task vector dengan ukuran 512 entries. Saat proses dibuat, task_struct baru dialokasikan dari memori sistem dan ditambahkan ke task vector. Linux juga mendukung proses secara real time. Proses semacam ini harus bereaksi sangat cepat terhadap event eksternal dan diperlakukan berbeda dari proses biasa lainnya oleh penjadwal.

Proses akan berakhir ketika ia memanggil exit(). Kernel akan menentukan waktu pelepasan sumber daya yang dimiliki oleh proses yang telah selesai tersebut. Fungsi do_exit() akan dipanggil saat terminasi yang kemudian memanggil __exit_mm/files/fs/sighand() yang akan membebaskan sumber daya. Fungsi exit_notify() akan memperbarui hubungan antara proses induk dan proses anak, semua proses anak yang induknya berakhir akan menjadi anak dari proses init. Terakhir akan dipanggil scheduler untuk menjalankan proses baru.

Deskriptor Proses

Guna keperluan manajemen proses, kernel memelihara informasi tentang setiap proses di sebuah deskriptor proses dengan tipe task_struct. Setiap deskriptor proses mengandung informasi antara lain status proses, ruang alamat, daftar berkas yang dibuka, prioritas proses, dan sebagainya. Berikut gambaran isinya:

Contoh 7-1. Isi Deskriptor Proses

			struct task_struct{
			  volatile long state; 
			  			/*-1 unrunnable, 
						   0 runnable, 
						   >0 stopped*/
			  unsigned long flags; 
			  			/* 1 untuk setiap flag proses */
			  mm_segment_t_addr_limit; 
			  			/* ruang alamat untuk thread */ 
			  struct exec_domain *exec_domain;
			  long need_resched;
			  long counter;
			  long priority;
			  /* SMP and runqueue state */
	   			struct task_struct *next_task, *prev_task;
	   			struct task_struct *next_run, *prev_run;
	   			...
			  /* task state */
			  /* limits */
			  /* file system info */
			  /* ipc stuff */
			  /* tss for this task */
			  /* filesystem information */
			  /* open file information */
			  /* memory management info */
			  /* signal handlers */
			     ...
			};

Setiap proses di Linux memiliki status. Status proses merupakan array dari flag yang mutually exclusive. Setiap proses memiliki tepat satu keadaan (status) pada suatu waktu. Status tersebut adalah:

Setiap proses atau pun eksekusi yang terjadwal secara independen memiliki deskriptor prosesnya sendiri. Alamat dari deskriptor proses digunakan untuk mengindentifikasi proses. Selain itu, nomor ID proses (PIDs) juga digunakan untuk keperluan tersebut. PIDs adalah 32-bit bilangan yang mengidentifikasikan setiap proses dengan unik. Linux membatasi PIDs berkisar 0-32767 untuk menjamin kompatibilitas dengan sistem UNIX tradisional.

Karena proses merupakan sesuatu yang dinamis, maka deskriptor proses disimpan dalam memori yang dinamis pula. Untuk itu dialokasikan juga memori sebesar 8KB untuk setiap proses untuk menyimpan proses deskriptornya dan stack proses dari modus kernel. Keuntungan dari dal ini adalah pointer dari deskriptor proses dari proses yang sedang berjalan (running) dapat diakses dengan cepat menggunakan stack pointer. Selain itu, 8KB (EXTRA_TASK_STRUCT) dari memori akan di-cache untuk mem-bypass pengalokasi memori kernel ketika sebuah proses dihapus dan sebuah proses baru dibuat. Kedua perintah free_task_struct() dan alloc_task_struct() akan digunakan untuk melepaskan atau mengalokasikan memori seukuran 8KB sebagai cache.

Deskriptor proses juga membangun sebuah daftar proses dari semua proses yang ada di sistem. Daftar proses tersebut merupakan sebuah doubly-linked list yang dibangun oleh bagian next_task dan prev_task dari deskriptor proses. Deskriptor init_task(mis:swapper) berada di awal daftar tersebut dengan prev_task-nya menunjuk ke deskriptor proses yang paling akhir masuk dalam daftar. Sedangkan makro for_each_task() digunakan untuk memindai seluruh daftar.

Proses yang dijadwalkan untuk dieksekusi dari doubly-linked list dari proses dengan status TASK_RUNNING disebut runqueue. Bagian prev_run dan next_run dari deskriptor proses digunakan untuk membangun runqueue, dengan init_task mengawali daftar tersebut. Sedangkan untuk memanipulasi daftar di deskriptor proses tersebut, digunakan fungsi-fungsi: add_to_runqueue(), del_from_runqueue(), move_first_runqueue(), move_last_runqueue(). Makro NR_RUNNING digunakan untuk menyimpan jumlah proses yang dapat dijalankan, sedangkan fungsi wake_up_process membuat sebuah proses menjadi dapat dijalankan.

Untuk menjamin akurasinya, array task akan diperbarui setiap kali ada proses baru dibuat atau pun dihapus. Sebuah daftar terpisah akan melacak elemen bebas dalam array task itu. Ketika suatu proses dihapus, entrinya ditambahkan di bagian awal dari daftar tersebut.

Proses dengan status task_interruptible dibagi ke dalam kelas-kelas yang terkait dengan suatu event tertentu. Event yang dimaksud misalnya: waktu kadaluarsa, ketersediaan sumber daya. Untuk setiap event atau pun kelas terdapat antrian tunggu yang terpisah. Proses akan diberi sinyal bangun ketika event yang ditunggunya terjadi. Berikut contoh dari antrian tunggu tersebut:

Contoh 7-2. Antrian Tunggu

			
				void sleep_on(struct wait_queue **wqptr) {
           		struct wait_queue wait;
           		current_state=TASK_UNINTERRUPTIBLE;
           		wait.task=current;
           		add_wait_queue(wqptr, &wait);
           		schedule();
           		remove_wait_queue(wqptr, &wait);
       		}
			

Fungsi sleep_on() akan memasukkan suatu proses ke dalam antrian tunggu yang diinginkan dan memulai penjadwal. Ketika proses itu mendapat sinyal untuk bangun, maka proses tersebut akan dihapus dari antrian tunggu.

Bagian lain konteks eksekusi proses adalah konteks perangkat keras, misalnya: isi register. Konteks dari perangkat keras akan disimpan oleh task state segment dan stack modus kernel. Secara khusus tss akan menyimpan konteks yang tidak secara otomatis disimpan oleh perangkat keras tersebut. Perpindahan antar proses melibatkan penyimpanan konteks dari proses yang sebelumnya dan proses berikutnya. Hal ini harus dapat dilakukan dengan cepat untuk mencegah terbuangnya waktu CPU. Versi baru dari Linux mengganti perpindahan konteks perangkat keras ini menggunakan piranti lunak yang mengimplementasikan sederetan instruksi mov untuk menjamin validasi data yang disimpan serta potensi untuk melakukan optimasi.

Untuk mengubah konteks proses digunakan makro switch_to(). Makro tersebut akan mengganti proses dari proses yang ditunjuk oleh prev_task menjadi next_task. Makro switch_to() dijalankan oleh schedule() dan merupakan salah satu rutin kernel yang sangat tergantung pada perangkat keras (hardware-dependent). Lebih jelas dapat dilihat pada kernel/sched.c dan include/asm-*/system.h.

Pembuatan Proses Dan Thread

Linux menggunakan representasi yang sama untuk proses dan thread. Secara sederhana thread dapat dikatakan sebuah proses baru yang berbagi alamat yang sama dengan induknya. Perbedaannnya terletak pada saat pembuatannya. Thread baru dibuat dengan system call clone yang membuat proses baru dengan identitas sendiri, namun diizinkan untuk berbagi struktur data dengan induknya.

Secara tradisional, sumber daya yang dimiliki oleh proses induk akan diduplikasi ketika membuat proses anak. Penyalinan ruang alamat ini berjalan lambat, sehingga untuk mengatasinya, salinan hanya dibuat ketika salah satu dari mereka hendak menulis di alamat tersebut. Selain itu, ketika mereka akan berbagi alamat tersebut ketika mereka hanya membaca. Inilah proses ringan yang dikenal juga dengan thread.

Thread dibuat dengan __clone(). __clone() merupakan rutin dari library system call clone(). __clone memiliki 4 buah argumen yaitu:

clone() mengambil argumen flags dan child_stack yang dimiliki oleh __clone kemudian menentukan id dari proses anak yang akan mengeksekusi fn dengan argumen arg.

Pembuatan anak proses dapat dilakukan dengan fungsi fork() dan vfork(). Implementasi fork() sama seperti system call clone() dengan sighandler SIGCHLD di-set, semua bendera clone di-clear yang berarti tidak ada sharing dan child_stack dibuat 0 yang berarti kernel akan membuat stack untuk anak saat hendak menulis. Sedangkan vfork() sama seperti fork() dengan tambahan bendera CLONE_VM dan CLONE_VFORK di-set. Dengan vfork(), induk dan anak akan berbagi alamat, dan induk akan di-block hingga anak selesai.

Untuk memulai pembuatan proses baru, clone() akan memanggil fungsi do_fork(). Hal yang dilakukan oleh do_fork() antara lain:

Beberapa proses sistem hanya berjalan dalam modus kernel di belakang layar. Untuk proses semacam ini dapat digunakan thread kernel. Thread kernel hanya akan mengeksekusi fungsi kernel, yaitu fungsi yang biasanya dipanggil oleh proses normal melalui system calls. Thread kernel juga hanya dieksekusi dalam modus kernel, berbeda dengan proses biasa. Alamat linier yang digunakan oleh thread kernel lebih besar dari PAGE_OFFSET proses normal yang dapat berukuran hingga 4GB. Thread kernel dibuat sebagai berikut: int kernel_thread(int (*fn) (void *), void *arg, unsigned long flags); flags=CLONE_SIGHAND, CLONE_FILES, etc

Penjadual

Penjadual adalah suatu pekerjaan yang dilakukan untuk mengalokasikan CPU time untuk tasks yang berbeda-beda dalam sistem operasi. Pada umumnya, kita berfikir penjadualan sebagai menjalankan dan menginterupsi suatu proses, untuk linux ada aspek lain yang penting dalam penjadualan: seperti menjalankan dengan berbagai kernel tasks. Kernel tasks meliputi task yang diminta oleh proses yang sedang dijalankan dan tasks yand dieksekusi internal menyangkut device driver yang berkepentingan.

Sinkronisasi Kernel

Cara penjadualan kernel pada operasinya secara mendasar berbeda dengan cara penjadualan suatu proses. Terdapat dua cara agar sebuah permintaan akan eksekusi kernel-mode dapat terjadi. Sebuah program yang berjalan dapat meminta service sistem operasi, dari system call atau pun secara implisit (untuk contoh:ketika page fault terjadi). Sebagai alternatif, device driver dapat mengirim interupsi perangkat keras yang menyebabkan CPU memulai eksekusi kernel-define handler untuk suatu interupsi.

Problem untuk kernel muncul karena berbagai tasksmungkin mencoba untuk mengakses struktur data internal yang sama. Jika hanya satu kernel task ditengah pengaksesan struktur data ketika interupsi service routine dieksekusi, maka service routine tidak dapat mengakses atau merubah data yang sama tanpa resiko mendapatkan data yang rusak. Fakta ini berkaitan dengan ide dari critical section (baca sinkronisasi proses).

Sehagai hasilnya, sinkronisasi kernel melibatkan lebih banyak dari hanya penjadualan proses saja. sebuah framework dibutuhkan untuk memperbolehkan kernel’s critical sections berjalan tanpa diinterupsi oleh critical section yang lain.

Solusi pertama yang diberikan oleh linux adalah membuat normal kernel code nonpreemptible (baca proses). Biasanya, ketika sebuah timer interrupt diterima oleh kernel, membuat penjadualan proses, kemungkinan besar akan menunda eksekusi proses yang sedang berjalan pada saat itu dan melanjutkan menjalankan proses yang lain. Biar bagaimana pun, ketika timer interrupt diterima ketika sebuah proses mengeksekusi kernel-system service routine, penjadualan ulang tidak dilakukan secara mendadak; cukup, kernel need_resched flag terset untuk memberitahu kernel untuk menjalankan penjadualan kembali setelah system call selesai dan control dikembalikan ke user mode.

Sepotong kernel code mulai dijalankan, akan terjamin bahwa itu adalah satu-satunya kernel code yang dijalankan sampai salah satu dari aksi dibawah ini muncul:

Interupsi adalah suatu masalah bila mengandung critical section-nya sendiri. Timer interrupt tidak secara langsung menyebabkan terjadinya penjadualan ulang suatu proses; hanya meminta suatu jadual untuk dilakukan kemudian, jadi kedatangan suatu interupsi tidak mempengaruhi urutan eksekusi dari noninterrupt kernel code. Sekali interrupt serviceselesai, eksekusi akan menjadi lebih simpel untuk kembali ke kernel code yang sedang dijalankan ketika interupsi mengambil alih.

Page faults adalah suatu masalah yang potensial; jika sebuah kernel routine mencoba untuk membaca atau menulis ke user memory, akan menyebabkan terjadinya page fault yang membutuhkan I/O diskuntuk selesai, dan proses yang berjalan akan di tunda sampai I/O selesai. Pada kasus yang hampir sama, jika system call service routine memanggil penjadualan ketika sedang berada di mode kernel, mungkin secara eksplisit dengan membuat direct call pada code penjadualan atau secara implisit dengan memanggil sebuah fungsi untuk menunggu I/O selesai, setelah itu proses akan menunggu dan penjadualan ulang akan muncul. Ketika proses jalan kembali, proses tersebut akan melanjutkan untuk mengeksekusi dengan mode kernel, melanjutkan intruksi setelah call (pemanggilan) ke penjadualan.

Kernel code dapat terus berasumsi bahwa ia tidak akan diganggu (pre-empted) oleh proses lainnya dan tidak ada tindakan khusus dilakukan untuk melindungi critical section. Yang diperlukan adalah critical section tidak mengandung referensi ke user memory atau menunggu I/O selesai.

Teknik kedua yang di pakai Linux untuk critical section yang muncul pada saat interrupt service routines. Alat dasarnya adalah perangkat keras interrupt-control pada processor. Dengan meniadakan interupsi pada saat critical section, maka kernel menjamin bahwa ia dapat melakukan proses tanpa resiko terjadinya ketidak-cocokan akses dari struktur data yang di share.

Untuk meniadakan interupsi terdapat sebuah pinalti. Pada arsitektur perangkat keras kebanyakan, pengadaan dan peniadaan suatu interupsi adalah sesuatu yang mahal. Pada prakteknya, saat interupsi ditiadakan, semua I/O ditunda, dan device yang menunggu untuk dilayani akan menunggu sampai interupsi diadakan kembali, sehingga kinerja meningkat. Kernel Linux menggunakan synchronization architecture yang mengizinkan critical section yang panjang dijalankan untuk seluruh durasinya tanpa mendapatkan peniadaan interupsi. Kemampuan secara spesial berguna pada networking code: Sebuah interupsi pada network device driver dapat memberikan sinyal kedatangan dari keseluruhan paket network, dimana akan menghasilkan code yang baik dieksekusi untuk disassemble, route, dan forward paket ditengah interrupt service routine.

Linux mengimplementasikan arsitektur ini dengan memisahkan interrupt service routine menjadi dua seksi: the top half dan the bottom half. The top half adalah interupsi yang normal, dan berjalan dengan rekursive interupt ditiadakan (interupsi dengan prioritas yang lebih tinggi dapat menginterupsi routine, tetapi interupsi dengan prioritas yang sama atau lebih rendah ditiadakan). The bottom half service routine berjalan dengan semua interupsi diadakan, oleh miniatur penjadualan yang menjamin bahwa bottom halves tidak akan menginterupsi dirinya sendiri. The bottom half scheduler dilakukan secara otomatis pada saat interupt service routine ada.

Pemisahan itu berarti bahwa kegiatan proses yang komplek dan harus selesai diberi tanggapan untuk suatu interupsi dapat diselesaikan oleh kernel tanpa kecemasan tentang diinterupsi oleh interupsi itu sendiri. Jika interupsi lain muncul ketika bottom half dieksekusi, maka interupsi dapat meminta kepada bottom half yang sama untuk dieksekusi, tetapi eksekusinya akan dilakukan setelah proses yang sedang berjalan selesai. Setiap eksekusi dari bottom half dapat di interupsi oleh top half tetapi tidak dapat diinterupsi dengan bottom half yang mirip.

Arsitektur Top-half bottom-half komplit dengan mekanisme untuk meniadakan bottom halver yang dipilih ketika dieksekusi secara normal, foreground kernel code. Kernel dapat meng-codekan critical section secara mudah dengan mengunakan sistem ini: penanganan interupsi dapat meng-codekan critical section-nya sebagai bottom halves, dan ketika foreground kernel ingin masuk ke critical section, setiap bottom halves ditiadakan untuk mencegah critical section yang lain diinterupsi. Pada akhir dari critical section, kernel dapat kembali mengadakan bottom halves dan menjalankan bottom half tasks yang telah di masukkan kedalam queue oleh top half interrupt service routine pada saat critical section.

Penjadualan Proses

Ketika kernel telah mencapai titik penjadualan ulang, entah karena terjadi interupsi penjadualan ulang mau pun karena proses kernel yang sedang berjalan telah diblokir untuk menunggu beberapa signal bangun, harus memutuskan proses selanjutnya yang akan dijalankan. Linux telah memiliki dua algoritma penjadualan proses yang terpisah satu sama lain. Algoritma yang pertama adalah algoritma time-sharing untuk penjadualan preemptive yang adil diantara sekian banyak proses. Sedangkan algoritma yang kedua didesain untuk tugas real-time dimana proritas mutlak lebih utama daripada keadilan mendapatkan suatu pelayanan.

Bagian dari tiap identitas proses adalah kelas penjadualan, yang akan menentukan algoritma yang digunakan untuk tiap proses. Kelas penjadualan yang digunakan oleh Linux, terdapat dalam standar perluasan POSIX untuk sistem komputer waktu nyata.

Untuk proses time-sharing, Linux menggunakan teknik prioritas, sebuah algoritma yang berdasarkan pada kupon. Tiap proses memiliki sejumlah kupon penjadualan; dimana ketika ada kesempatan untuk menjalankan sebuah tugas, maka proses dengan kupon terbanyaklah yang mendapat giliran. Setiap kali terjadi interupsi waktu, proses yang sedang berjalan akan kehilangan satu kupon; dan ketika kupon yang dimiliki sudah habis maka proses itu akan ditunda dan proses yang lain akan diberikan kesempatan untuk masuk.

Jika proses yang sedang berjalan tidak meiliki kupon sama sekali, linux akan melakukan operasi pemberian kupon, memberikan kupon kepada tiap proses dalam sistem, dengan aturan main: kupon = kupon / 2 + prioritas Algoritma ini cenderung untuk menggabungkan dua faktor yang ada: sejarah proses dan prioritas dari proses itu sendiri. Satu setengah dari kupon yang dimiliki sejak operasi pembagian kupon terakhir akan tetap dijaga setelah algoritma telah dijalankan, menjaga beberapa sejarah sikap proses. Proses yang berjalan sepanjang waktu akan cenderung untuk menghabiskan kupon yang dimilikinya dengan cepat, tapi proses yang lebih banyak menunggu dapat mengakumulasi kuponnya dari. Sistem pembagian kupon ini, akan secara otomatis memberikan proritas yang tinggi ke proses I/O bound atau pun interaktif, dimana respon yang cepat sangat diperlukan.

Kegunaan dari proses pemberian prioritas dalam menghitung kupon baru, membuat prioritas dari suatu proses dapat ditingkatkan. Pekerjaan background batch dapat diberikan prioritas yang rendah; proses tersebut akan secara otomatis menerima kupon yang lebih sedikit dibandingkan dengan pekerjaan yang interaktif, dan juga akan menerima persentase waktu CPU yang lebih sedikit dibandingan dengan tugas yang sama dengan prioritas yang lebih tinggi. Linux menggunakan sistem prioritas ini untuk menerapkan mekanisme standar pembagian prioritas proses yang lebih baik.

Penjadualan waktu nyata Linux masih tetap lebih sederhana. Linux, menerapkan dua kelas penjadualan waktu nyata yang dibutuhkan oleh POSIX 1.b: First In First Out dan round-robin. Pada keduanya, tiap proses memiliki prioritas sebagai tambahan kelas penjadualannya. Dalam penjadualan time-sharing, bagaimana pun juga proses dengan prioritas yang berbeda dapat bersaing dengan beberapa pelebaran; dalam penjadualan waktu nyata, si pembuat jadual selalu menjalankan proses dengan prioritas yang tinggi. Diantara proses dengan prioritas yang sama, maka proses yang sudah menunggu lama, akan dijalankan. Perbedaan satu – satunya antara penjadualan FIFO dan round-robin adalah proses FIFO akan melanjutkan prosesnya sampai keluar atau pun diblokir, sedangkan proses round-robin akan di-preemptive-kan setelah beberapa saat dan akan dipindahkan ke akhir antrian, jadi proses round-robin dengan prioritas yang sama akan secara otomatis membagi waktu jalan antar mereka sendiri.

Perlu diingat bahwa penjadualan waktu nyata di Linux memiliki sifat yang lunak. Pembuat jadual Linux menawarkan jaminan yang tegas mengenai prioritas relatif dari proses waktu nyata, tapi kernel tidak menjamin seberapa cepat penjadualan proses waktu-nyata akan dijalankan pada saat proses siap dijalankan. Ingat bahwa kode kernel Linux tidak akan pernah bisa dipreemptive oleh kode mode pengguna. Apabila terjadi interupsi yang membangunkan proses waktu nyata, sementara kernel siap untuk mengeksekusi sebuah sistem call sebagai bagian proses lain, proses waktu nyata harus menunggu sampai sistem call yang sedang dijalankan selesai atau diblokir.

Symmetric Multiprocessing

Kernel Linux 2.0 adalah kernel Linux pertama yang stabil untuk mendukung perangkat keras symmetric multiprocessor (SMP). Proses mau pun thread yang berbeda dapat dieksekusi secara paralel dengan processor yang berbeda. Tapi bagaimana pun juga untuk menjaga kelangsungan kebutuhan sinkronisasi yang tidak dapat di-preemptive dari kernel, penerapan SMP ini menerapkan aturan dimana hanya satu processor yang dapat dieksekusi dengan kode mode kernel pada suatu saat. SMP menggunakan kernel spinlock tunggal untuk menjalankan aturan ini. Spinlock ini tidak memunculkan permasalahan untuk pekerjaan yang banyak menghabiskan waktu untuk menunggu proses komputasi, tapi untuk pekerjaan yang melibatkan banyak aktifitas kernel, spinlock dapat menjadi sangat mengkhawatirkan.

Sebuah proyek yang besar dalam pengembangan kernel Linux 2.1 adalah untuk menciptakan penerapan SMP yang lebih masuk akal, dengan membagi kernel spinlock tunggal menjadi banyak kunci yang masing-masing melindungi terhadap masuknya kembali sebagian kecil data struktur kernel. Dengan menggunakan teknik ini, pengembangan kernel yang terbaru mengizinkan banyak processor untuk dieksekusi oleh kode mode kernel secara bersamaan.

Managemen Memori di Linux

Managemen Memori Fisik

Bagian ini menjelaskan bagaimana linux menangani memori dalam sistem. Memori managemen merupakan salah satu bagian terpenting dalam sistem operasi. Karena adanya keterbatasan memori, diperlukan suatu strategi dalam menangani masalah ini. Jalan keluarnya adalah dengan menggunakan memori virtual. Dengan memori virtual, memori tampak lebih besar daripada ukuran yang sebenarnya.

Dengan memori virtual kita dapat:

  1. Ruang alamat yang besar

    Sistem operasi membuat memori terlihat lebih besar daripada ukuran memori sebenarnya. Memori virtual bisa beberapa kali lebih besar daripada memori fisiknya.

  2. Pembagian memori fisik yang adil

    Managemen memori membuat pembagian yang adil dalam pengalokasian memori antara proses-proses.

  3. Perlindungan

    Memori managemen menjamin setiap proses dalam sistem terlindung dari proses-proses lainnya. Dengan demikian, program yang crash tidak akan mempengaruhi proses lain dalam sistem tersebut.

  4. Penggunaan memori virtual bersama

    Memori virtual mengizinkan dua buah proses berbagi memori diantara keduanya, contohnya dalam shared library. Kode library dapat berada di satu tempat, dan tidak dikopi pada dua program yang berbeda.

Memori Virtual

Memori fisik dan memori virtual dibagi menjadi bagian-bagian yang disebut page. Page ini memiliki ukuran yang sama besar. Tiap page ini punya nomor yang unik, yaitu Page Frame Number (PFN). Untuk setiap instruksi dalam program, CPU melakukan mapping dari alamat virtual ke memori fisik yang sebenarnya.

Penerjemahan alamat di antara virtual dan memori fisik dilakukan oleh CPU menggunakan tabel page untuk proses x dan proses y. Ini menunjukkan virtial PFN 0 dari proses x dimap ke memori fisik PFN 1. Setiap anggota tabel page mengandung informasi berikut ini:

  1. Virtual PFN
  2. PFN fisik
  3. informasi akses page dari page tersebut

Untuk menerjemahkan alamat virtual ke alamat fisik, pertama-tama CPU harus menangani alamat virtual PFN dan offsetnya di virtual page. CPU mencari tabel page proses dan mancari anggota yang sesuai degan virtual PFN. Ini memberikan PFN fisik yang dicari. CPU kemudian mengambil PFN fisik dan mengalikannya dengan besar page untuk mendapat alamat basis page tersebut di dalam memori fisik. Terakhir, CPU menambahkan offset ke instruksi atau data yang dibutuhkan. Dengan cara ini, memori virtual dapat dimap ke page fisik dengan urutan yang teracak.

Demand Paging

Cara untuk menghemat memori fisik adalah dengan hanya meload page virtual yang sedang digunakan oleh program yang sedang dieksekusi. Tehnik dimana hanya meload page virtual ke memori hanya ketika program dijalankan disebut demand paging.

Ketika proses mencoba mengakses alamat virtual yang tidak ada di dalam memori, CPU tidak dapat menemukan anggota tabel page. Contohnya, dalam gambar, tidak ada anggota tabel page untuk proses x untuk virtual PFN 2 dan jika proses x ingin membaca alamat dari virtual PFN 2, CPU tidak dapat menterjemahkan alamat ke alamat fisik. Saat ini CPU bergantung pada sistem operasi untuk menangani masalah ini. CPU menginformasikan kepada sistem operasi bahwa page fault telah terjadi, dan sistem operasi membuat proses menunggu selama sistem operasi menagani masalah ini.

CPU harus membawa page yang benar ke memori dari image di disk. Akses disk membutuhkan waktu yang sangat lama dan proses harus menunggu sampai page selesai diambil. Jika ada proses lain yang dapat dijalankan, maka sistem operai akan memilihnya untuk kemudian dijalankan. Page yang diambil kemudian dituliskan di dalam page fisik yang masih kosong dan anggota dari virtual PFN ditambahkan dalam tabel page proses. Proses kemudian dimulai lagi pada tempat dimana page fault terjadi. Saat ini terjadi pengaksesan memori virtual, CPU membuat penerjemahan dan kemudian proses dijalankan kembali.

Demand paging terjadi saat sistem sedang sibuk atau saat image pertama kali diload ke memori. Mekanisme ini berarti sebuah proses dapat mengeksekusi image dimana hanya sebagian dari image tersebut terdapat dalam memori fisik.

Efisiensi

Desainer dari CPU dan sistem operasi berusaha meningkatkan kinerja dari sistem. Disamping membuat prosesor, memori semakin cepat, jalan terbaik adalah manggunakan cache. Berikut ini adalah beberapa cache dalam managemen memori di linux:

  1. Page Cache

    Digunakan untuk meningkatkan akses ke image dan data dalam disk. Saat dibaca dari disk, page dicache di page cache. Jika page ini tidak dibutuhkan lagi pada suatu saat, tetapi dibutuhkan lagi pada saat yang lain, page ini dapat segera diambil dari page cache.

  2. Buffer Cache

    Page mungkin mengandung buffer data yang sedang digunakan oleh kernel, device driver dan lain-lain. Buffer cache tampak seperti daftar buffer. Contohnya, device driver membutuhkan buffer 256 bytes, adalah lebih cepat untuk mengambil buffer dari buffer cache daripada mengalokasikan page fisik lalu kemudian memecahnya menjadi 256 bytes buffer-buffer.

  3. Swap Cache

    Hanya page yang telah ditulis ditempatkan dalam swap file. Selama page ini tidak mengalami perubahan setelah ditulis ke dalam swap file, maka saat berikutnya page di swap out tidak perlu menuliskan kembali jika page telah ada di swap file. Di sistem yang sering mengalami swap, ini dapat menghemat akses disk yang tidak perlu.

Salah satu implementasi yang umum dari hardware cache adalah di CPU, cache dari anggota tabel page. Dalam hal ini, CPU tidak secara langsung membaca tabel page, tetap mencache terjemahan page yang dibutuhkan.

Load dan Eksekusi Program

  1. Penempatan program dalam memori

    Linux membuat tabel-tabel fungsi untuk loading program, memberikan kesempatan kepada setiap fungsi untuk meload file yang diberikan saat sistem call exec dijalankan. Pertama-tama file binari dari page ditempatkan pada memori virtual. Hanya pada saat program mencoba mengakses page yang telah diberikan terjadi page fault, maka page akan diload ke memori fisik.

  2. Linking statis dan linking dinamis

    1. Linking statis:

      librari-librari yang digunakan oleh program ditaruh secara langsung dalam file binari yang dapat dieksekusi. Kerugian dari linking statis adalah setiap program harus mengandung kopi library sistem yang umum.

    2. Linking dinamis:

      hanya sekali meload librari sistem menuju memori. Linking dinamis lebih efisien dalam hal memori fisik dan ruang disk.

Sistem Berkas Linux

Sistem Berkas Virtual

Objek dasar dalam layer-layer virtual file system

  1. File

    File adalah sesuatu yang dapat dibaca dan ditulis. File ditempatkan pada memori. Penempatan pada memori tersebut sesuai dengan konsep file deskriptor yang dimiliki unix.

  2. Inode

    Inode merepresentasikan objek dasar dalam file sistem. Inode bisa saja file biasa, direktori, simbolik link dan lain sebagainya. Virtual file sistem tidak memiliki perbedaan yang jelas di antara objek, tetapi mengacu kepada implementasi file sistem yang menyediakan perilaku yang sesuai. Kernel tingkat tinggi menangani objek yang berbeda secara tidak sama.

    File dan inode hampir mirip diantara keduanya. Tetapi terdapat perbedaan yang penting diantara keduanya. Ada sesuatu yang memiliki inode tetapi tidak memiliki file, contohnya adalah simbolik link. Ada juga file yang tidak memiliki inode seperti pipes dan socket.

  3. File sistem

    File system adalah kumpulan dari inode-inode dengan satu inode pembeda yaitu root. Inode lainnya diakses mulai dari root inode dan pencarian nama file untuk menuju ke inode lainnya.

    File sistem mempunyai beberapa karakteristik yang mencakup seluruh inode dalam file sistem. Salah satu yang terpenting adalah blocksize.

  4. Nama inode

    Semua inode dalam file sistem diakses melalui namanya. Walau pun pencarian nama inode bisa menjadi terlalu berat untuk beberapa sistem, virtual file sistem pada linux tetap memantau cache dan nama inode yang baru saja terpakai agar kinerja meningkat. Cache terdapat di memori sebagai tree, ini berarti jika sembarang inode dari file terdapat di dalam cache, maka parent dari inode tersebut juga terdapat di dalam cache.

Virtual file system layer menangani semua pengaturan nama path dari file dan mengubahnya menjadi masukan di dalam cache sebelum mengizinkan file sistem untuk mengaksesnya. Ada pengecualian pada target dari simbolik link, akan diakses file sistem secara langsung. File sistem diharapkan untuk menginterpretasikannya.

Operasi-operasi Dalam Inode

Linux menyimpan cache dari inode aktif mau pun dari inode yang telah terakses sebelumnya. Ada 2 path dimana inode ini dapat diakses. Yang pertama telah disebutkan sebelumnya, setiap entri dalam cache menunjuk pada suatu inode dan menjaga inode tetap dalam cache. Yang kedua melalui inode hash table. Setiap inode mempunyai alamat 8 bit sesuai dengan alamat dari file sistem superblok dan nomor inode. Inode dengan nilai hash yang sama kemudian dirangkai di doubly linked list.

Perubahan pada cache melibatkan penambahan dan penghapusan entri-entri dari cache itu sendiri. Entri-entri yang tidak dibutuhkan lagi akan di unhash sehingga tidak akan tampak dalam pencarian berikutnya.

Operasi diperkirakan akan mengubah struktur cache harus dikunci selama melakukan perubahan. Unhash tidak memerlukan semaphore karena ini bisa dilakukan secara atomik dalam kernel lock. Banyak operasi file memerlukan 2 langkah proses. Yang pertama adalah melakukan pencarian nama di dalam direktori. Langkah kedua adalah melakukan operasi pada file yang telah ditemukan. Untuk menjamin tidak terdapatnya proses yang tidak kompatibel diantara kedua proses itu, setelah proses kedua, virtual file sistem protokol harus memeriksa bahwa parent entry tetap menjadi parent dari entri childnya. Yang menarik dari cache locking adalah proses rename, karena mengubah 2 entri dalam sekali operasi.

Sistem Berkas Linux

Sistem Berkas EXT2

  1. Keterangan

    EXT2 adalah file sistem yang ampuh di linux. EXT2 juga merupakan salah satu file sistem yang paling ampuh dan menjadi dasar dari segala distribusi linux. Pada EXT2 file sistem, file data disimpan sebagai data blok. Data blok ini mempunyai panjang yang sama dan meski pun panjangnya bervariasi diantara EXT2 file sistem, besar blok tersebut ditentukan pada saat file sistem dibuat dengan perintah mk2fs. Jika besar blok adalah 1024 bytes, maka file dengan besar 1025 bytes akan memakai 2 blok. Ini berarti kita membuang setengah blok per file.

    EXT2 mendefinisikan topologi file sistem dengan memberikan arti bahwa setiap file pada sistem diasosiasiakan dengan struktur data inode. Sebuah inode menunjukkan blok mana dalam suatu file tentang hak akses setiap file, waktu modifikasi file, dan tipe file. Setiap file dalam EXT2 file sistem terdiri dari inode tunggal dan setiap inode mempunyai nomor identifikasi yang unik. Inode-inode file sistem disimpan dalam tabel inode. Direktori dalam EXT2 file sistem adalah file khusus yang mengandung pointer ke inode masing-masing isi direktori tersebut.

  2. Inode dalam EXT2

    Inode adalah kerangka dasar yang membangun EXT2. Inode dari setiap kumpulan blok disimpan dalam tabel inode bersama dengan peta bit yang menyebabkan sistem dapat mengetahui inode mana yang telah teralokasi dana inode mana yang belum. MODE: mengandung dia informasi, inode apa dan izin akses yang dimiliki user. OWNER INFO: user atau grop yang memiliki file atau direktori SIZE: besar file dalam bytes TIMESTAMPS: kapan waktu pembuatan inode dan waktu terakhir dimodifikasi. DATABLOKS: pointer ke blok yang mengandung data.

    EXT2 inode juga dapat menunjuk pada device khusus, yang mana device khusus ini bukan merupakan file, tatapi dapat menangani program sehingga program dapat mengakses ke device. Semua file device di dalam drektori /dev dapat membantu program mengakses device.

  3. Superblok dalam EXT2

    Superblok mengandung informasi tentang ukuran dasar dan bentuk file sistem. Informasi di dalamnya memungkinkan file sistem manager untuk menggunakan dan merawat file sistem. Biasanya, hanya superblok di blok group 0 saat file sistem di-mount tetapi setiap blok grup mengandung duplikatnya untuk menjaga jika file sistem menjadi rusak. Informasi yang dikandung adalah:

    1. Magic Number

      meyakinkan software bahwa ini adalah superblok dari EXT2 file sistem.

    2. Revision Level

      menunjukkan revisi mayor dan minor dari file sistem.

    3. Mount Count dan Maksimum Mount Count

      menunjukkan pada sistem jika harus dilakukan pengecekan dan maksimum mount yang diijikan sebelum e2fsck dijalankan.

    4. Blocks per Size

      besar blok dalam file sistem, contohnya 1024 bytes.

    5. Blocks per Group

      benyaknya blok per group.

    6. Block Group Number

      nomor blok group yang mengadung copy dari superblok.

    7. Free Blocks

      banyaknya blok yang kosong dalam file sistem.

    8. Free Inode

      banyak inode kosong dalam file sistem.

    9. First Inode

      nomor inode dalam inode pertama dalam file sistem, inode pertama dalam EXT2 root file sistem adalah direktori “/”.

Sistem Berkas EXT3

EXT3 adalah peningkatan dari EXT2 file sistem. Peningkatan ini memiliki beberapa keuntungan, diantaranya:

  1. Setelah kegagalan sumber daya, “unclean shutdown”, atau kerusakan sistem, EXT2 file sistem harus melalui proses pengecekan dengan program e2fsck. Proses ini dapat membuang waktu sehingga proses booting menjadi sangat lama, khususnya untuk disk besar yang mengandung banyak sekali data. Dalam proses ini, semua data tidak dapat diakses.

    Jurnal yang disediakan oleh EXT3 menyebabkan tidak perlu lagi dilakukan pengecekan data setelah kegagalan sistem. EXT3 hanya dicek bila ada kerusakan hardware seperti kerusakan hard disk, tetapi kejadian ini sangat jarang. Waktu yang diperlukan EXT3 file sistem setelah terjadi “unclean shutdown” tidak tergantung dari ukuran file sistem atau banyaknya file, tetapi tergantung dari besarnya jurnal yang digunakan untuk menjaga konsistensi. Besar jurnal default memerlukan waktu kira-kira sedetik untuk pulih, tergantung kecepatan hardware.

  2. Integritas data

    EXT3 menjamin adanya integritas data setelah terjadi kerusakan atau “unclean shutdown”. EXT3 memungkinkan kita memilih jenis dan tipe proteksi dari data.

  3. Kecepatan

    Daripada menulis data lebih dari sekali, EXT3 mempunyai throughput yang lebih besar daripada EXT2 karena EXT3 memaksimalkan pergerakan head hard disk. Kita bisa memilih tiga jurnal mode untuk memaksimalkan kecepatan, tetapi integritas data tidak terjamin.

  4. Mudah dilakukan migrasi

    Kita dapat berpindah dari EXT2 ke sistem EXT3 tanpa melakukan format ulang.

Ditulis dalam Linux. Leave a Comment »

Configuration ubuntu server

Configuring Static ip address in Ubuntu server

Ubuntu installer has configured our system to get its network settings via DHCP, Now we will change that to a static IP address for this you need to edit Edit /etc/network/interfaces and enter your ip address details (in this example setup I will use the IP address 172.19.0.10):

sudo vi /etc/network/interfaces

and enter the following save the file and exit

# The primary network interface

auto eth0
iface eth0 inet static
address 172.19.0.10
netmask 255.255.255.0
network 172.19.0.0
broadcast 172.19.0.255
gateway 172.19.0.1

Now you need to restart your network services using the following command

sudo /etc/init.d/networking restart

You need to setup manually DNS servers in resolv.conf file when you are not using DHCP.

sudo vi /etc/resolv.conf

You need to add look something like this

search domain.com

nameserver xxx.xxx.xxx.xxx

Install SSH Server

If you want to access your server remotely through SSH you need to install SSH server for this you need to run the following command

sudo apt-get install ssh openssh-server

You will be prompted to insert the installation CD again and this will complete SSH server in your Gutsy lamp server.This is really simple and easy server installation for new users and who wants a quick server.

GUI Installation for Ubuntu LAMP Server

Option1

If you are a new user and not familiar with command prompt you can install GUI for your ubuntu LAMP server for this you need to make sure you have enabled Universe and multiverse repositories in /etc/apt/sources.list file once you have enable you need to use the following command to install GUI

sudo apt-get update

sudo apt-get install ubuntu-desktop

The above command will install GNOME desktop if you want to install KDE desktop use the following command

sudo apt-get install kubuntu-desktop

Optio2

Installing Webmin in Ubuntu Gutsy Gibbon

Webmin is a web-based interface for system administration for Unix. Using any modern web browser, you can setup user accounts, Apache, DNS, file sharing and much more. Webmin removes the need to manually edit Unix configuration files like /etc/passwd, and lets you manage a system from the console or remotely.

You can install webmin for your server web interface to configure apache,mysql servers.Now we will see how to install webmin in Ubuntu 7.10

Preparing your system

First you need to install the following packages

sudo apt-get install perl libnet-ssleay-perl openssl libauthen-pam-perl libpam-runtime libio-pty-perl libmd5-perl

Now download the latest webmin using the following command

wget http://prdownloads.sourceforge.net/webadmin/webmin_1.370_all.deb

Now we have webmin_1.370_all.deb package install this package using the following command

sudo dpkg -i webmin_1.370_all.deb

This will complete the installation.

Ubuntu in particular don’t allow logins by the root user by default. However, the user created at system installation time can use sudo to switch to root. Webmin will allow any user who has this sudo capability to login with full root privileges.

Now you need to open your web browser and enter the following

https://your-server-ip:10000/

Now you should see similar to the following Screen

Once you enter into the webmin you should see similar to the following screen

If you want to configure Apache,Mysql server you need to click on Servers on your lefthand side you should many servers are ready to configure

This is very Easy to configure most of the servers and Enjoy your new Ubuntu Gutsy Gibbon LAMP Server

Ditulis dalam Linux. Leave a Comment »